
Reddit.st in 10 elegant classes

Sven van Caekenberghe

May 12, 2017

master@40c6905

Copyright 2017 by Sven van Caekenberghe.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Reddit.st – in 10 Cool Pharo Classes 1

2 First RedditLink: a Model 3

3 RedditLinkTests 7

4 Intermezzo 11

4.1 Installing Postgres . 11

4.2 Intermezzo: Installing Glorp . 12

5 RedditSchema: Describing database data 13

6 Connecting to the Database 15

7 Time to test: RedditDatabaseTest 17

8 RedditSession 19

9 Web Part: the Component WAReddit 21

10 RedditFileLibrary 25

11 WARedditLinkEditor 27

12 WARedditCaptcha: A last Web Component 31

13 Conclusion 33

13.1 Appendix . 33

i

Illustrations

2-1 RedditLink defined. 5

3-1 First green tests. 9

9-1 Reddit . 21

ii

CHA P T E R 1
Reddit.st – in 10 Cool Pharo

Classes

CRUD refers to the Create, Read, Update and Delete operations in persistent
storage. The term CRUD applications often refers to simple applications
managing simple data and that have to be created fast. Often CRUD devel-
opment is done with languages such as PHP. In this booklet we want to show
that Pharo is a really good alternative and that in addition, your CRUD ap-
plications can evolve (which is often the problems of the use of traditional
languages). We will show you that it is perfectly possible to write nice web
applications in Pharo and really fast and Reddit.st adds persistency in a rela-
tional database, unit tests as well as web application components to the mix.

Technically speaking, this tutorial will show how to implement a small but
non-trivial web application in Pharo http://www.pharo.org using Seaside http:

//seaside.st, Glorp http://glorp.org (an ORM) and PostgreSQL http://www.postgresql.

org.

Reddit http://www.reddit.com is web application where users can post inter-
esting links that get voted up or down. The idea is that the ’best’ links end up
with the most points automatically. Many other websites exist in the area of
social bookmarking, like Delicious, Digg and Hacker News.

This tutorial is based on the web version available at: https://medium.com/

@svenvc/reddit-st-in-10-cool-pharo-classes-1b5327ca0740,

Reddit.st adds persistency in a relational database, unit tests as well as web
application components to the mix.

The 10 main sections of this booklet follow the development of the 10 classes
making up the application. The focus of the Pharo version is not so much on

1

http://www.pharo.org
http://seaside.st
http://seaside.st
http://glorp.org
http://www.postgresql.org
http://www.postgresql.org
http://www.reddit.com
https://medium.com/@svenvc/reddit-st-in-10-cool-pharo-classes-1b5327ca0740
https://medium.com/@svenvc/reddit-st-in-10-cool-pharo-classes-1b5327ca0740

Reddit.st – in 10 Cool Pharo Classes

the small size or the high developer productivity, but more on the fact that
we can cover so much ground using such powerful frameworks, as well as the
natural development flow from model over tests and persistence to web GUI.

The appendix explains how to get the source code discussed in this article.

The material shown in this booklet was originally written by Sven Van Caeken-
berghe and we thanks him for his permission to use it to create this booklet.
We assume that you understand what web applications are and how Sea-
side basically works. If not, you should read the Seaside Chapter available
in Pharo by Example or the introduction in Dynamic Web Development with
Seaside available http://books.pharo.org for an introduction. We also will as-
sume that you have a basic understanding of relational databases and/or
SQL.

2

http://books.pharo.org

CHA P T E R2
First RedditLink: a Model

The central object of our application is RedditLink, representing an inter-
esting URL with a title, a created timestamp and a number of points. It has
the following properties: id url title created points.

These are naturally instance variables of our class. Create a new Object sub-
class by editing the class template.

Object subclass: #RedditLink
instanceVariableNames: 'id url title created points'
classVariableNames: ''
package: 'Reddit'

Next, use the class refactoring tool to automatically generate accessors (get-
ters and setters) for all our instance variables. With these implemented we
can write our initialize and printOn: methods.

Initialization and more

RedditLink >> initialize
self
points: 0;
created: DateAndTime now

RedditLink >> printOn: stream
super printOn: stream.
stream nextPut: $(.
self url printOn: stream.
stream nextPut: $,.
self title printOn: stream.
stream nextPut: $)

3

First RedditLink: a Model

We also add a method named posted that will return the Duration of time
the link now exists. We will need that when rendering links later on.

RedditLink >> age
^ TimeStamp now - self created

To make it a little bit easier for others to create new instances of us, we add a
class method called withUrl:title:.

RedditLink class >> withUrl: url title: title
^ self new

url: url;
title: title;
yourself

At this point you should be able to obtain an inspector on an instance as
shown in Figure 3-1.

(RedditLink withUrl: 'http://pharo.org' title: 'pharo') inspect

Example support

To make the manipulation of examples easier we also add an example method
on the class side and we annotate with the pragram <sampleInstance>. This
way pressing the green arrow will open an inspector on the object and this is
super handy.

RedditLink class >> pharoDotOrg
<sampleInstance>
^ self withUrl: 'http://pharo.org' title: 'pharo'

Voting support

Apart from creating and displaying RedditLinks, users should be able to
vote them up and down. Therefore, we add two action methods, voteUp and
voteDown.

RedditLink >> voteUp
self points: self points + 1

RedditLink >> voteDown
self points > 0 ifTrue: [self points: self points - 1]

The core of RedditLink objects is now finished. Everything is ready to make
instances and use them.

4

Figure 2-1 RedditLink defined.

CHA P T E R3
RedditLinkTests

Units tests are very important, not so much in small examples like this one,
but especially in larger applications. Having a good set of unit tests with
descent coverage helps protect the code during changes. At the same time,
unit tests function as working documentation. Instead of writing scratch test
code in some workspace, you can just as well write a unit test.

TestCase creation

We create the class RedditLinkTests as a subclass of TestCase and add 3
test methods.

TestCase subclass: #RedditLinkTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Reddit'

After creating a RedditLink object, and/or manipulating it, these methods
assert that certain conditions hold. To improve code sharing (we’ll need it
again in Section 5) we add a method called assertContractUsing: to Red-
ditLink that checks the basic contract of the receiver, using the method as-
sert: on an arbitrary object. For completeness, we also implement a general
valiate testing method.

RedditLink >> assertContractUsing: object
object assert: (self url isNil or: [self url isString]).
object assert: (self title isNil or: [self title isString]).
object assert: (self created isKindOf: DateAndTime).
object assert: (self points isKindOf: Integer).
object assert: self age asSeconds >= 0.
object assert: self printString isString

7

RedditLinkTests

RedditLink >> validate
self assertContractUsing: self

Tests

Now we can take advantage of these methods in our tests.

RedditLinkTests >> testInitialState
| link |
link := RedditLink new.
link assertContractUsing: self.
self assert: link points isZero

RedditLinkTests >> testCreate
| link url title |
url := 'http://www.seaside.st'.
title := 'Seaside'.
link := RedditLink withUrl: url title: title.
link assertContractUsing: self.
self assert: link points isZero.
self assert: link url equals: url.
self assert: link title equals: title

RedditLinkTests >> testVoting
| link |
link := RedditLink new.
link assertContractUsing: self.
self assert: link points isZero.
link voteUp.
self assert: link points equals: 1.
link voteDown.
self assert: link points isZero.
link voteDown.
self assert: link points isZero

Pharo has integrated tools to quickly run these tests. There is a separate Test
Runner, but you can run tests directly from a Browser as well. The browser
even has a permanent indication for successful and failed tests.

Note A little remark. This is often even better to write tests before the
code of classes.

This way you are always sure that what you write is fulfilling your specifica-
tions.

8

Figure 3-1 First green tests.

CHA P T E R4
Intermezzo

4.1 Installing Postgres

On Mac

We downloaded Postgres.app from the web site of https://www.postgresql.org/
download/

We follow the step mentioned on the page.

• Download: Move to Applications folder and Double Click. If you don’t
move Postgres.app to the Applications folder, you will see a warning
about an unidentified developer and won’t be able to open it.

• Click ”Initialize” to create a new server

• Configure your $PATH to use the included command line tools (op-
tional):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin
| sudo tee /etc/paths.d/postgresapp

Done! You now have a PostgreSQL server running on your Mac with these
default settings:

Host: localhost
Port: 5432
User: your system user name
Database: same as user
Password none
Connection URL postgresql://localhost

On the command line you can type

11

https://www.postgresql.org/download/
https://www.postgresql.org/download/

Intermezzo

/Applications/Postgres.app/Contents/Versions/9.6/bin/psql -p5432

4.2 Intermezzo: Installing Glorp

Metacello new
smalltalkhubUser: 'DBXTalk' project: 'Garage';
configuration: 'GarageGlorp';
version: #stable;
load.

12

CHA P T E R5
RedditSchema: Describing

database data

To make our application less trivial, we are going to make our collection of
links persistent in a relation database. For this we are going to use Glorp,
an object-relational mapping tool. Glorp will take care of all the SQL! To do
its magic, Glorp needs a DescriptorSystem that tells it 3 things: the class
models involved, the tables involved and the way the two map (which it calls
a descriptor).

In this simple case we are just mapping one object into one table, so the de-
scriptor system might look a bit verbose. Just remember that Glorp can do
much, much more advanced things. Furthermore, there exist extensions to
Glorp that implement ActiveRecord style automatic descriptors.

Defining Schema

First let us define a new class description named RedditSchemaDescriptor
subclass of DescriptorSystem for Glorp.

DescriptorSystem subclass: #RedditSchemaDescriptor
instanceVariableNames: ''
classVariableNames: ''
package: 'Reddit-DB'

Using this class we can tell Glorp about our class model, RedditLink, and
which instance variables are to be persistent attributes. Instead of some XML
description, a much more powerful Smalltalk object model is being built.
Conventions in methods names are being used to glue things together.

13

RedditSchema: Describing database data

RedditSchemaDescriptor >> constructAllClasses
^ super constructAllClasses add: RedditLink; yourself

RedditSchemaDescriptor >> classModelForRedditLink: aClassModel
#(id url title created points) do: [:each | aClassModel
newAttributeNamed: each]

Tables

The second step is to describe which tables are involved. So here we list all
the fields (columns) of our table REDDIT_LINKS. Glorp shields us from the
differences between different SQL dialects. Note how id is designated to be
a primary key. The serial type will result in an SQL sequence being used.

what is that a serial type

RedditSchemaDescriptor >> allTableNames
^ #('REDDIT_LINKS')

RedditSchemaDescriptor >> tableForREDDIT_LINKS: aTable
(aTable createFieldNamed: 'id' type: platform serial)
bePrimaryKey.
aTable createFieldNamed: 'url' type: (platform varchar: 64).
aTable createFieldNamed: 'title' type: (platform varchar: 64).
aTable createFieldNamed: 'created' type: platform timestamp.
aTable createFieldNamed: 'points' type: platform integer

The third and final step is the actual descriptor describing the mapping be-
tween the class model RedditLink and the table REDDIT_LINKS. In this sim-
ple case, direct mappings are used between attributes and fields. As we will
see in the next sections, Glorp is now ready to do its work.

RedditSchemaDescriptor >> descriptorForRedditLink: aDescriptor

| table |
table := self tableNamed: 'REDDIT_LINKS'.
aDescriptor table: table. (aDescriptor newMapping:
DirectMapping) from: #id to: (table fieldNamed: 'id').
(aDescriptor newMapping: DirectMapping) from: #url to: (table
fieldNamed: 'url').
(aDescriptor newMapping: DirectMapping) from: #title to: (table
fieldNamed: 'title').
(aDescriptor newMapping: DirectMapping) from: #created to:
(table fieldNamed: 'created').
(aDescriptor newMapping: DirectMapping) from: #points to:
(table fieldNamed: 'points')

14

CHA P T E R6
Connecting to the Database

Let’s assume you installed and configured PostgreSQL on some machine and
that you created some database there.

Creation a database resource

We now have to specify how Glorp has to connect to PostgreSQL. We do this
creating a new class named RedditDatabaseResource.

Object subclass: #RedditDatabaseResource
instanceVariableNames: ''
classVariableNames: 'DefaultLogin'
package: 'Reddit-DB'

We will add some class methods (as well as a class variable called Default-
Login).

RedditDatabaseResource class >> login
DefaultLogin ifNil: [DefaultLogin := self createLogin].
^ DefaultLogin

RedditDatabaseResource class >> login: aLogin
"see #createLogin for an example of how to create a Login
object"
DefaultLogin := aLogin

RedditDatabaseResource class >> createLogin
^ Login new

database: PostgreSQLPlatform new;
username: 'svc';
password: 'secret';
connectString: 'localhost:5432_playground';
yourself

15

Connecting to the Database

The username and password speak for themselves, the connectString con-
tains the hostname, port number and database name (after an underscore).

Using Session

Glorp accesses a database through sessions. A session is most easily started
from a descriptor system given a login as argument, that’s what we do in the
session helper class method.

RedditDatabaseResource >> session
^ RedditSchema sessionForLogin: self login

RedditDatabaseResource >> create
"This has to be done only once, be sure to set #login"
|session |
session := self session.
session accessor

login;
logging: true.

session inTransactionDo: [session createTables].
session accessor logout

Glorp can even help us to create our REDDIT_LINKS table, that is what the
createTables class method does. So we truly don’t have to use any SQL! The
flow should be familiar: get a session, login, do some work in a transaction
and logout. By setting logging to true, the generated SQL statements will be
printed on the Transcript (comment this out for production use).

16

CHA P T E R7
Time to test:

RedditDatabaseTest

With our RedditSchema descriptor system and our RedditLinksDatabaseRe-
source we are now ready to test the persistency of our model. We create
another class named RedditDatabaseTest which inherits from TestCase.
These tests need an instance variable called session to hold the Glorp ses-
sion, as well as setUp and teardownmethods.

Object subclass: #RedditDatabaseTest
instanceVariableNames: 'session'
classVariableNames: ''
package: 'Reddit-DB'

RedditDatabaseTest >> setUp
session := RedditDatabaseResource session.
session accessor logging: true; login

RedditDatabaseTest >> tearDown
session accessor logout

Our first test reads all RedditLinks from the database, making sure they are
valid and of the expected type. Querying doesn’t have to be done in a unit of
work or transaction.

RedditDatabaseTest >> testQuery
|links|
links := session readManyOf: RedditLink.
links do: [:each |

each assertContractUsing: self.
self assert: (each isKindOf: RedditLink)]

17

Time to test: RedditDatabaseTest

The second test creates a new RedditLink and then registers it with the ses-
sion inside a unit of work. This will effectively save the object in the database.
The id of the RedditLink will have a value afterwards. Next we reset the ses-
sion and query the RedditLink with the known id. After making sure that
what we put in got out of the database we delete the object.

RedditDatabaseTest >> testUpdate
| link url title id |
url := 'http://www.seaside.st'.
title := 'Seaside Unit Test'.
link := RedditLink withUrl: url title: title.
session inUnitOfWorkDo: [session register: link].
id := link id.
session inUnitOfWorkDo: [session register: link. link voteUp].
session reset.

The third test checks if updating an existing persistent object works as ex-
pected. Note that the actual modification, the voteUp, has to be done inside a
unit of work to a registered object for it to be picked up by Glorp.

RedditDatabaseTest >> testCreate
| link url title id |
url := 'http://www.seaside.st'.
title := 'Seaside Unit Test'.
link := RedditLink withUrl: url title: title.
session inUnitOfWorkDo: [session register: link].
id := link id.
self assert: id notNil.
session reset.
link := session readOneOf: RedditLink where: [:each | each id
= id].
link assertContractUsing: self.
self assert: link url = url.
self assert: link title = title.
session delete: link

18

CHA P T E R8
RedditSession

We are almost ready to start writing the GUI of our actual web application.
Seaside web applications often have a session object that keeps the appli-
cation’s state during the user’s interaction with it. We need to extend that
session with a database session. We define a new class RedditSession as a
subclass of WASession. In addition, it has an instance variable called glo-
rpSession to hold a Glorp session to the database.

WASession subclass: #RedditSession
instanceVariableNames: 'glorpSession'
classVariableNames: ''
package: 'Reddit-DB'

Note how we are using lazy initialization in the glorpSession accessor. In
newGlorpSession we’re making use of our RedditDatabaseResource.

RedditSession >> glorpSession
glorpSession ifNil: [glorpSession := self newGlorpSession].
glorpSession accessor isLoggedIn

ifFalse: [glorpSession accessor login].
^ glorpSession

RedditSession >> newGlorpSession
| session |
session := RedditDatabaseResource session.
"session accessor logging: true."
^ session

The unregistered is a hook called by Seaside whenever a session expires,
we use it clean up our Glorp session by doing a log out.

RedditSession >> unregistered
super unregistered.

19

RedditSession

self teardownGlorpSession

RedditSession >> teardownGlorpSession
self glorpSession logout

20

CHA P T E R9
Web Part: the Component

WAReddit

We can finally start with our web app itself. Figure 1 shows the main page
of the Reddit.st app. There are four sections in this page: a header or title
section, some action links, a list of some of the highest or top ranking links
and a list if some of the latest or most recent links.

We create a WAComponent subclass called WAReddit. This will become our

Figure 9-1 Reddit

21

Web Part: the Component WAReddit

central or root web app component. We start by writing the rendering meth-
ods.

WAReddit >> renderContentOn: html
html heading: 'Reddit.st'.
html heading level: 3; with: 'In 10 elegant Smalltalk classes'.
self renderActionsOn: html.
self renderHighestRankingLinksOn: html.
self renderLatestLinksOn: html

WAReddit >> renderActionsOn: html
html paragraph: [html anchor callback: []; with: 'Refresh'.
html anchor callback: [self inform: 'Not yet implemented'];
with: 'New Link']

WAReddit >> renderHighestRankingLinksOn: html
html heading level: 2; with: 'Highest Ranking Links'.
html orderedList: [

self highestRankingLinks do: [:each | self renderLink:
each on: html]]

WAReddit >> renderLatestLinksOn: html
html heading level: 2; with: 'Latest Links'.
html orderedList: [

self latestLinks do: [:each | self renderLink: each on:
html]]

WAReddit >> renderLink: link on: html
html listItem: [html anchor url: link url; title: link url;
with: link title.
html text: ' Posted ', (self class durationString: link posted),
' ago. '.
html text: link points asString, ' points. '.
html anchor

callback: [self voteUp: link];
title: 'Vote this link up';
with: 'Up'.

html space.
html anchor

callback: [self voteDown: link];
title: 'Vote this link down'; with: 'Down']

Starting with the main renderContentOn: method, the rendering of each
section is delegated to its own method. Note how renderLink:on: is used 2
times.

Rendering Link

For now, we’re not yet implementing the ’New Link’ action. Our rendering
methods depend on 5 extra methods: highestRankingLinks, latestLinks,
the class method durationString: and the actions methods voteUp: and
voteDown:. Only the first three are needed to render the page itself.

22

WAReddit >> highestRankingLinks
| query |
query := (Query readManyOf: RedditLink)

orderBy: [:each | each points descending];
limit: 20; yourself.

^ self session glorpSession execute: query

WAReddit >> latestLinks
| query |
query := (Query readManyOf: RedditLink)

orderBy: [:each | each created descending];
limit: 20; yourself.

^ self session glorpSession execute: query

WAReddit >> durationString: duration
^ String streamContents: [:stream |

| needSpace printer |
needSpace := false.
printer := [:value :word |

value isZero ifFalse: [
needSpace ifTrue: [stream space].
stream nextPutAll: (value pluralize:

word).
needSpace := true]].

printer value: duration days value: 'day'.
printer value: duration hours value: 'hour'.
printer value: duration minutes value: 'minute']

In highestRankingLinks and latestLinks, we explicitly build up and ex-
ecute Query objects with some more advanced options. For duration string
conversion we use the powerful pluralizemethod. With these in place we
can already render the page. Since we did not yet add any CSS styling, the
result will look rather dull.

WAReddit >> voteDown:link
self session glorpSession

inUnitOfWorkDo: [:session | session register: link.
link voteDown]

WAReddit >> voteUp: link
self session glorpSession

inUnitOfWorkDo: [:session |
session register: link.
link voteUp]

Voting links up or down is trivial, like with our database test, we only have to
make sure to do the object modifications inside a Glorp unit of work and the
actual SQL update will be done automatically.

23

CHA P T E R 10
RedditFileLibrary

To style our web app, we’ll be reusing the CSS file from Reddit.lisp. This
CSS code references one small GIF for its background gradient. We need to
make sure our application makes use of the CSS file and that we serve the ac-
tual files. Seaside can serve these files in a couple of ways, we’ll be using the
FileLibrary approach. This is a class where each resource served is imple-
mented as a method.

We define a new class, subclass of WAFileLibrary, named RedditFileLi-
brary will thus have 2 methods: mainCss and bgGif, returning a string and
bytes respectively. These are long methods which are not our main focus so
we do not list them here. Based on some naming conventions, Seaside will
figure out what mime types to use.

RedditFileLibrary >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot title: 'Reddit.st'.
anHtmlRoot stylesheet url: (RedditFileLibrary urlOf: #mainCss)

By implementing the updateRoot: hook method on WAReddit, we can set
our page title and CSS. Note again how everything happens in Smalltalk.
To install a Seaside application, a class side initializemethod is typically
used.

RedditFileLibrary class >> initialize
(WAAdmin register: self asApplicationAt: 'reddit')

preferenceAt: #sessionClass put: RedditSession;
addLibrary: RedditFileLibrary

We register our application under the handler ’reddit’ so its URL will become
something like http://localhost:8080/reddit. Then we tell it to use our

25

RedditFileLibrary

custom session class and finally add our file library. We now have a nicely
styled, working web app.

26

CHA P T E R 11
WARedditLinkEditor

One of Seaside’s main advantages over other web application frameworks is
its support for components. Especially for large and complex projects this
makes a huge difference. We’ll be introducing a new component to allow
the user to enter the necessary information when adding a new link. Con-
sider the difference between Figure 1 and Figure 2: when the user clicks the
'New Link' anchor, we’ll add an editor just below (while hiding the 'New
Link' anchor). The editor will have its own ’Save’ and ’Cancel’ buttons. Both
of these will dismiss the editor, saving or cancelling the new link.

redditNewLink

How is Seaside’s component model powerful? As we will see next, the compo-
nent is written without any knowledge of where it will be used. Its validation
logic is independent. It is used just by embedding it and by wiring it to its
user in a simple way. The subcomponent functions independently from its
embedding parent while each keeps its own state: whether the component is
visible or not, you can keep on voting links up or down, and doing so will not
alter the contents of the component.

To prove our point, we’ll be using yet another component inside our link
editor: a simple CAPTCHA component. This will be implemented in the final
section, but used here as a black box.

The first step is to make the necessary additions and modifications to WARed-
dit to accommodate the link editor component. We add an instance variable
called linkEditor with its accessors.

WAReddit >> renderContentOn: html
html heading: 'Reddit.st'.
html heading level: 3; with: 'In 10 elegant Smalltalk classes'.
self renderActionsOn: html.

27

WARedditLinkEditor

self linkEditor notNil
ifTrue: [html render: self linkEditor].

self renderHighestRankingLinksOn: html.
self renderLatestLinksOn: html

WAReddit >> renderActionsOn: html
html paragraph: [
html anchor callback: []; with: 'Refresh'.
self linkEditor isNil ifTrue: [
html anchor callback: [self showNewLinkEditor]; with: 'New

Link']]

WAReddit >> showNewLinkEditor
self linkEditor: WARedditLinkEditor new.
self linkEditor onAnswer: [:answer |

answer ifTrue: [
self session glorpSession inUnitOfWorkDo: [:session |

session register: self linkEditor createLink]].
self linkEditor: nil]

WAReddit >> children
^ self linkEditor notNil

ifTrue: [Array with: self linkEditor]
ifFalse: [super children]

There are 2 possible states: either we have a link editor subcomponent or
not. So the main renderContentOn: method conditionally asks the link edi-
tor to render itself. Likewise, in renderActionsOn: the ’New Link’ anchor is
only rendered when there is no link editor yet.

In the showNewLinkEditor action method we instantiate our subcomponent
and hook it up. We could have reused just one instance, creating a new one
is easier and clearer. The wiring is done by supplying a block to onAnswer:.
A component can answer a value, in our case true or false for save or cancel
respectively. So when the link editor answers true, we save a new link object
and hide the editor.

In Seaside, the childrenmethod is a hook method that has to be imple-
mented to list all subcomponents. Again this happens conditionally.

We can now implement the component itself: WARedditLinkEditor is a sub-
class of WAComponent with 3 instances variables and their accessors: url,
title and capcha.

WARedditLinkEditor >> renderContentOn: html
html form: [
html paragraph: 'Please enter a URL and title for the link that
you want to add:'.
html textInput size: 48; title: 'The URL of the new link'; on:
#url of: self.
html textInput size: 48; title: 'The title of the new link'; on:
#title of: self.

28

html render: self captcha.
html submitButton on: #cancel of: self.
html submitButton on: #save of: self]

WARedditLinkEditor >> initialize
super initialize.
self url: 'http://';
title: 'title';
captcha: WARedditCaptcha new

WARedditLinkEditor >> children
^ Array with: self captcha

WARedditLinkEditor >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot title: 'Reddit.st - Submit a new link'.
anHtmlRoot stylesheet url: (RedditFileLibrary urlOf: #mainCss)

WARedditLinkEditor >> cancel
self answer: false

WARedditLinkEditor >> save
self isUrlMissing ifTrue: [^ self inform: 'Please enter an URL'].
self isTitleMissing ifTrue: [^ self inform: 'Please enter a

title'].
self captcha isSolved ifFalse: [^ self inform: 'Please answer the

correct sum using digits'].
self isUrlValid ifFalse: [^ self inform: 'The URL you entered did

not resolve'].
self answer: true

WARedditLinkEditor >> isTitleMissing
^ self title isNil or: [self title isEmpty or: [self title =

'title']]

WARedditLinkEditor >> isUrlMissing
^ self url isNil or: [self url isEmpty or: [self url = 'http://'

]]

WARedditLinkEditor >> isUrlValid
^ (WebClient httpGet: self url) isSuccess

WARedditLinkEditor >> createLink
^ RedditLink withUrl: self url title: self title

Most of the code should be familiar by now. New is how cancel and save use
answer: to return to whoever called upon this component. Before save re-
turns successfully, a number of validation tests are done. When one of these
tests fails, a message is shown and the operation is aborted. The isUrlValid
method actually tries to resolve the URL. Finally, createLink instantiates a
new RedditLink instance based on the valid fields entered by the user. Note
how the CAPTCHA is used as a true component.

29

CHA P T E R 12
WARedditCaptcha: A last Web

Component

The last and simplest web component is a CAPTCHA that presents a simple
addition in words. This component does not need answer logic. The class
WARedditCaptcha is again a subclass of WAComponent with the following in-
stance variables and accessors: x, y, and sum.

WARedditCaptcha >> renderContentOn: html
self x: 10 atRandom.
self y: 10 atRandom.
html paragraph: 'CAPTCHA: How much is ',
self x asWords, ' plus ', self y asWords, ' ?'.

html textInput
title: 'This functions as a CAPTCHA, type the answer using
digits';
on: #sum of: self

WARedditCaptcha >> initialize
super initialize.
self x: 0; y: 0; sum: 0

WARedditCaptcha >> isSolved
^ self sum asInteger = (self x + self y)

Each time the CAPTCHA is rendered, x and y get a new random value be-
tween 1 and 10. Next, the addition is presented in words. The isSolved
method checks if the user answered correctly.

31

CHA P T E R 13
Conclusion

The source code discussed in this chapter is available the SqueakSource
project called ADayAtTheBeach. Look for the package called Reddit.

Measuring the quality of the design is often a challenge. We believe that hav-
ing classes with clear responsibilities. This is what we applied when design-
ing such little application. Reddit.st consists of 10 classes for a total of 8 class
methods and 75 instance methods. More than half are just one (1) line long,
the rest averages just a few lines.

13.1 Appendix

The source code discussed in this article is available from SmalltalkHub in
a project called Reddit. It was written for Pharo 3.0. You should load the
code using its Metacello configuration, because Seaside and Glorp have to
be loaded as well. These are both heavy packages that take a while to load
and compile.

Gofer it
smalltalkhubUser: 'SvenVanCaekenberghe' project: 'Reddit';
configuration;
loadStable.

You will have to configure the connection to your PostgreSQL instance. One
way to do so it to edit the method RedditDatabaseResource class>> cre-
ateLogin. After you have done so, make sure to clear the cached version by
doing RedditDatabaseResource resetLogin.

Alternatively, you can download a prebuilt image containing everything as
the latest successful build artifact from the Pharo Contribution CI job called
Reddit https://ci.inria.fr/pharo-contribution/job/Reddit/

33

https://ci.inria.fr/pharo-contribution/job/Reddit/

	Illustrations
	Reddit.st – in 10 Cool Pharo Classes
	First RedditLink: a Model
	Initialization and more
	Example support
	Voting support

	RedditLinkTests
	TestCase creation
	Tests

	Intermezzo
	Installing Postgres
	On Mac

	Intermezzo: Installing Glorp

	RedditSchema: Describing database data
	Defining Schema
	Tables

	Connecting to the Database
	Creation a database resource
	Using Session

	Time to test: RedditDatabaseTest
	RedditSession
	Web Part: the Component WAReddit
	Rendering Link

	RedditFileLibrary
	WARedditLinkEditor
	WARedditCaptcha: A last Web Component
	Conclusion
	Appendix

