
Learning Object-Oriented

Programming, Design and TDD

with Pharo

Stéphane Ducasse with Damien Pollet

April 1, 2018

master@b7eb254

© 2017 by Stéphane Ducasse with Damien Pollet.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0 International” license.

This is a human-readable summary of (and not a substitute for) the license:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

You are free to:

s Share Copy and redistribute the material in any medium or format.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

b Attribution You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but
not in any way that suggests the licensor endorses you or your use.

n NonCommercial You may not use the material for commercial purposes.

d NoDerivatives If you remix, transform, or build upon the material, you may not
distribute the modified material.

No additional restrictions You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Contents

Illustrations vii

1 About this book 1

1.1 A word of presentation . 1

1.2 Structure of the book . 2

1.3 What you will learn . 3

1.4 Typographic conventions . 4

1.5 Videos . 5

1.6 Thanks . 5

I Getting in touch with Pharo

2 Pharo syntax in a nutshell 9

2.1 Simplicity and elegance of messages . 9

2.2 Which message is executed first? . 12

2.3 Sending messages to classes . 13

2.4 Local variables and statement sequences 14

2.5 About literal objects . 14

2.6 Sending multiple messages to the same object 15

2.7 Blocks . 16

2.8 Control structures . 16

2.9 Methods . 17

2.10 Resources . 18

2.11 Conclusion . 19

3 Syntax summary 21

4 Challenge yourself 25

4.1 Challenge: Message identification . 25

4.2 Challenge: Literal objects . 27

4.3 Challenge: Kind of messages . 27

4.4 Challenge: Results . 28

4.5 Challenge: unneeded parentheses . 29

i

Contents

5 Developing a simple counter 31

5.1 Our use case . 31

5.2 Create your own class . 32

5.3 Define protocols and methods . 33

5.4 Define a Test Class . 36

5.5 Saving your work . 36

5.6 Adding more messages . 39

5.7 Better object description . 40

5.8 Instance initialization method . 41

5.9 Conclusion . 42

6 Tests, tests and tests 43

6.1 Writing a test in 2 minutes . 43

6.2 Test Driven Design . 44

6.3 Why testing is important . 45

6.4 What makes a good test? . 46

6.5 SUnit by example . 47

6.6 The SUnit cookbook . 51

6.7 Defining a fixture . 52

6.8 Chapter summary . 53

7 Some collection katas with words 55

7.1 Isogram . 55

7.2 About strings . 56

7.3 A solution using sets . 56

7.4 Defining a test . 58

7.5 Some fun: Obtaining french isograms . 60

7.6 Pangrams . 61

7.7 Handling alphabet . 63

7.8 Identifying missing letters . 64

7.9 Palindrome as exercise . 67

7.10 Conclusion . 67

II About objects and classes

8 Objects and classes 73

8.1 Objects: Entities reacting to messages . 73

8.2 Messages and Methods . 75

8.3 An object is a protective entity . 76

8.4 An object protects its data . 77

8.5 With counters . 78

8.6 A class: blueprint or factory of objects . 79

8.7 Class and instances are really different . 81

8.8 Conclusion . 82

ii

Contents

9 Revisiting objects and classes 83

9.1 A simple and naive file system . 83

9.2 Studying a first scenario . 84

9.3 Defining a class . 85

9.4 Printing a directory . 87

9.5 Adding files . 88

9.6 One message and multiple methods . 90

9.7 Objects: stepping back . 91

9.8 Examples of distribution of responsibilities 91

9.9 Important points . 93

9.10 Distribution of responsibilities . 94

9.11 So far so good? Not fully! . 95

9.12 Conclusion . 95

10 Converter 97

10.1 First a test . 97

10.2 Define a test method (and more) . 98

10.3 The class TemperaturConverter . 99

10.4 Converting from Farhenheit to Celsius . 100

10.5 About floats . 100

10.6 Printing rounded results . 101

10.7 Building a map of degrees . 102

10.8 Spelling Fahrenheit correctly! . 103

10.9 Adding logging behavior . 104

10.10 Discussion . 106

10.11 Conclusion . 107

11 An electronic wallet 109

11.1 A first test . 109

11.2 Adding coins . 110

11.3 Looking at Bag . 111

11.4 Using a bag for a wallet . 112

11.5 More tests . 113

11.6 Testing money . 113

11.7 Checking to pay an amount . 114

11.8 Biggest coin . 114

11.9 Biggest below a value . 115

11.10 Improving the API . 115

11.11 Coins for paying: First version . 117

11.12 Better heuristics . 118

11.13 Conclusion . 119

12 Crafting a simple embedded DSL with Pharo 121

12.1 Getting started . 121

12.2 Rolling a die . 123

12.3 Creating another test . 123

iii

Contents

12.4 Instance creation interface . 124

12.5 First specification of a die handle . 126

12.6 Defining the DieHandle class . 127

12.7 Improving programmer experience . 128

12.8 Rolling a die handle . 128

12.9 About Dice and DieHandle API . 130

12.10 Role playing syntax . 131

12.11 Handle’s addition . 133

12.12 Conclusion . 133

III Sending messages

13 Sending a message is making a choice 137

13.1 Negation: the not message . 138

13.2 Implementing not . 138

13.3 Implementing disjunction . 140

13.4 About ifTrue:ifFalse: implementation . 142

13.5 What is the point? . 143

13.6 Conclusion . 146

IV Looking at inheritance

14 Inheritance: Incremental definition and behavior reuse 149

14.1 Inheritance . 149

14.2 Improving files/directories example design 151

14.3 Transformation strategies . 151

14.4 Factoring out state . 152

14.5 Factoring similar methods . 155

14.6 Sending a message and method lookup 156

14.7 Basic method overrides . 157

14.8 self-send messages and lookup create hooks 158

14.9 Hook/Template explanations . 159

14.10 Essence of self and dispatch . 160

14.11 Instance variables vs. messages . 162

14.12 Conclusion . 162

15 Extending superclass behavior 163

15.1 Revisiting printOn: . 163

15.2 Improving the situation . 164

15.3 Extending superclass behavior using super 166

15.4 Another example . 168

15.5 Really understanding super . 169

15.6 Conclusion . 170

iv

Contents

16 A little expression interpreter 171

16.1 Starting with constant expression and a test 171

16.2 Negation . 172

16.3 Adding expression addition . 173

16.4 Multiplication . 174

16.5 Stepping back . 175

16.6 Negated as a message . 177

16.7 Annoying repetition . 179

16.8 Introducing Expression class . 180

16.9 Class creation messages . 181

16.10 Introducing examples as class messages 183

16.11 Printing . 184

16.12 Revisiting negated message for Negation 187

16.13 Introducing BinaryExpression class . 188

16.14 What did we learn . 191

16.15 About hook methods . 192

16.16 Variables . 193

16.17 Conclusion . 197

V Little projects

17 A simple network simulator 201

17.1 Packets are simple value objects . 202

17.2 Nodes are known by their address . 203

17.3 Links are one-way connections between nodes 204

17.4 Making our objects more understandable 206

17.5 Simulating the steps of packet delivery . 207

17.6 Sending a packet . 209

17.7 Transmitting across a link . 209

17.8 The loopback link . 210

17.9 Modeling the network itself . 212

17.10 Looking up nodes . 215

17.11 Looking up links . 215

17.12 Packet delivery with forwarding . 217

17.13 Introducing a new kind of node . 218

17.14 Other examples of specialized nodes . 219

17.15 Conclusion . 221

18 Snakes and ladders 223

18.1 Game rules . 223

18.2 Game possible run . 224

18.3 Potential objects and responsibilities . 225

18.4 About object-oriented design . 227

18.5 Let us get started . 229

18.6 A first real test . 230

v

Contents

18.7 Accessing one tile . 232

18.8 Adding players . 232

18.9 Avoid leaking implementation information 234

18.10 About tools . 235

18.11 Displaying players . 235

18.12 Preparing to move players . 238

18.13 Finding the tile of a player . 239

18.14 Moving to another tile . 239

18.15 Snakes and ladders . 240

18.16 A hierarchy of tiles . 241

18.17 New printing hook . 244

18.18 Using the new hook . 245

18.19 About hooks and templates . 246

18.20 Snake and ladder declaration . 246

18.21 Better tile protocol . 247

18.22 Active tile actions . 249

18.23 Alternating players . 250

18.24 Player turns and current player . 250

18.25 How to find the logic of currentPlayer? . 251

18.26 Game end . 252

18.27 Playing one move . 253

18.28 Automated play . 256

18.29 Variations . 257

18.30 Conclusion . 257

19 TinyChat: a fun and small chat client/server 259

19.1 Objectives and architecture . 259

19.2 Loading Teapot . 260

19.3 Message representation . 260

19.4 Instance initialisation . 261

19.5 Converting a message object into a string 261

19.6 Building a message from a string . 262

19.7 Starting with the server . 262

19.8 The Chat server . 264

19.9 Server logic . 265

19.10 The client . 267

19.11 Client operations . 268

19.12 Client connection parameters . 270

19.13 User interface . 271

19.14 Now chatting . 272

19.15 Conclusion and ideas for future extensions 273

vi

Illustrations

1-1 Reading maps. 2

2-1 Executing an expression in Playground. 10

2-2 Reading or editing a method using a code browser. Topleft pane: list of

packages then list of classes then protocols then method lists - middle

pane: method definition. Last pane: Quality Assistant. 17

5-1 Package created and class creation template. 32

5-2 Class created. 34

5-3 Selecting a new kind of repository to the list of possible places to commit

the package. 37

5-4 Editing the repository information. 37

5-5 Class with green tests. 40

5-6 Better description doing a Print It (cmd + P). 41

6-1 Running SUnit tests from the System Browser: Just click on the round

little button close to the class or method. 48

6-2 Running SUnit tests using the TestRunner. 49

8-1 An object presents to the other objects an interface composed of a set of

messages defining what he can do. This behavior is realized by methods

that specify how the behavior is implemented. When a message is sent

to an object a method with the message name (called selector) is looked

up and executed. 76

8-2 The message square: can be implemented differently. This different

implementation does not impact the sender of the message who is not

concerned by the internals of the object. 77

8-3 A turtle is an object which has an interface, i.e., a set of messages to

which it can reply and a private state that only its methods can access. . . . 78

8-4 Two turtles have the same interface, i.e., set of messages being

understood but they have different private state representing their

direction, position and pen status. 78

vii

Illustrations

9-1 Some directories and files organised in a file system. 83

9-2 Inspecting dOldComics and clicking on the parent variable. 84

9-3 The Directory class and some instances (directories). 85

9-4 Navigating an object graph by sending message to different objects. 88

9-5 A graph of objects to represent our file system. 88

9-6 A new class and its instances. 89

9-7 Printing a file: Sending messages inside a graph of different objects. 90

9-8 Two classes understanding similar sets of message. 91

12-1 A single class with a couple of messages. Note that the method

withFaces: is a class method. 122

12-2 Inspecting and interacting with a die. 123

12-3 A die handle is composed of dice. 126

12-4 Inspecting a DieHandle. 127

12-5 Die details. 129

12-6 A die handle with more information. 129

12-7 A polymorphic API supports the Don’t ask, tell principle. 130

13-1 The two classes True and False and their respective unique instances

true and false. 139

13-2 Two methods for one message. 139

13-3 Two methods for one message each one returning the other instance. . . . 139

13-4 Sending a message selects the method in the class of the receiver. 140

13-5 Disjunction implementation: two methods. 142

13-6 Conditional implementation: again two methods and no explicit tests. . . . 143

13-7 One single class vs. a nice hierarchy. 145

13-8 One single class vs. a nice hierarchy. 145

14-1 Two classes understanding similar sets of messages and structuring their

instances in a similar way. 150

14-2 Two class taking advantages of inheriting from a common superclass. 152

14-3 Moving the instance variable name to the superclass. 153

14-4 Applying the Pull Up Instance variable refactoring. 154

14-5 State factored between the two classes and their superclass. 155

14-6 State and Methods factored out in the superclass. 155

14-7 When an object receives a message, the corresponding method is looked

up in its class and if necessary its superclasses (Step 1 and 2). Then the

method is executed on the message receiver (Step 3). 156

14-8 A self-send creates a hook (kind) that subclasses override. The method

describe is called a template because it creates a context. 160

14-9 Self semantics abstractly explained. 161

viii

Illustrations

15-1 MFFile and MFDirectory contain duplicated logic in printOn:. 164

15-2 Improving the logic (but not fully). 165

15-3 Using super to invoke the overridden method printOn:. 166

15-4 Using super to invoke the overridden method size. 168

15-5 Example to understand super. 170

16-1 A flat collection of classes (with a suspect duplication). 173

16-2 Expressions are composed of trees. 175

16-3 Evaluation: one message and multiple method implementations. 176

16-4 Code repetition is a bad smell. 179

16-5 Introducing a common superclass. 180

16-6 printOn: and printString a ”hooks and template”in action. 185

16-7 The message negated is overridden in the class ENegation. 189

16-8 Factoring instance variables. 190

16-9 Factoring instance variables and behavior. 191

16-10 Better design: Declaring an abstract method as a way to document a

hook method. 193

17-1 Two little networks composed of nodes and sending packets over links. . . . 202

17-2 Current API of our three main classes. 206

17-3 Navigating specific objects having a generic presentation. 207

17-4 Navigating objects offering a customized presentation. 208

17-5 Richer API. 210

17-6 A hub. 213

17-7 A possible extension: a more realistic network with a cycle between three

router nodes. 221

18-1 An example Snakes and Ladders board with two ladders and a snake. 223

18-2 Playground in action. Use Do it and go - to get an embedded inspector. . . . 234

18-3 Inspecting the game: a game instance and its instance variable tiles. . . . 236

18-4 Navigating inside the game: getting inside the tiles and checking the players. 236

18-5 Navigating the objects using the navigation facilities of the inspector. 237

18-6 Current simple design: three classes with a player acting a simple object. . . 241

18-7 A hierarchy of tiles. 242

18-8 Introducing printInsideOn: as a new hook. 245

18-9 acceptPlayer: and releasePlayer: new message. 249

18-10 Playing step by step inside the inspector. 255

18-11 Automated play. 256

19-1 Chatting with TinyChat. 260

19-2 Testing the server. 266

19-3 Server access. 273

ix

CHA P T E R 1
About this book

1.1 A word of presentation

I started to write this book back in 1998 when I wrote around 900 pages in
preparation for Learning Programming with Robots (Apparently I needed to
write to understand what I wanted to explain and how). From this I extracted
Learning Programming with Robots, which was a book to teach simple concepts
such as variables, loops, procedures and to help people teach kids how to
program. My original objective was to write a second volum to teach object-
oriented programming. But while this first volume was a success, I got really
frustrated because to be understandable by everyone I had to remove what I
like: object-oriented programming and good object-oriented design.

At that time, I met Harald Wertz, who gave me really nice ideas and pointers
such as L-systems, then asked why I focused on procedural thinking and sug-
gested that I should teach object-oriented programming instead. And he was
right. This remark was like a bee in my bonnet for more than ten years. In
fact, it was my original objective but I was exhausted after my first attempt
and I had to focus on my academic life.

Now, nearly fifteen years later, I’m ready to write a book to start with object-
oriented programming. In fact I rewrote everything I got from that time. I
hope that you will enjoy it as much as I did — even if, for me, writing a book
is a really long and daunting task because I want to make it great. I plan to
write another volume on patterns of design that will extend this book.

1

About this book

Getting familiar with objects
 and syntaxSyntax

String Katas
Counter
Tests

Expressions

Fast Track

Simple objects

Converter
Wallet

A Domain Specific
Language

Looking at Inheritance

LAN

Objects and Classes

Inheritance

Projects

LAN Simulator

SnakesAndLadders

Volume 1

Messages

TinyChat

Figure 1-1 Reading maps.

1.2 Structure of the book

While writing this book, I faced a challenge to find the correct level of diffi-
culty. To solve this problem, I structured the book either into key chapters
on basic concepts, or into projects on more advanced topics. The projects
are little tutorials or more realistic examples, with step by step explana-
tions; you can skip over them and come back to read them whenever you feel
like it. I also propose various paths through the book with different levels of
reading; however, many of the simpler chapters also contain design remarks.

Fast track

The following chapters contain more conceptual information:

In the volume 1:

• Glimpse of the syntax

• Tests, tests and tests

2

1.3 What you will learn

• Objects and classes

• Revisiting objects and classes

• Domain specific language

• Inheritance and expressions

• Sending messages

• Snakes and ladders

The other chapters are more exercise and pratical. For example, with Tiny-
Chat you will have fun with a web server written in the single page of code.
You will find the solutions of the exercises in a separate pdf available on the
book web site at http://books.pharo.org and the associated github repository
https://github.com/SquareBracketAssociates/LearningOOPWithPharo.

1.3 What you will learn

I would like to present the concepts that I want to teach you and that hope-
fully you should acquire. What is key to understand is that I will focus on the
key conceptual elements. It is easy for me because I will not explain OOP/D in
general but within the context of Pharo and Pharo is the essence of Object-
Oriented programming since its object model is minimal but it covers the key
and essential aspect of OOP. For example we will not present method modi-
fiers, types, overloading (which is a bad concept).

We will focus on object-oriented programming concepts:

• Objects / Classes

• Messages / Methods

• self and its semantics

• Inheritance

• super and its semantics

…and on object-oriented design concepts:

• Class responsibility collaboration

• Delegation

• Message sends are choice

• Message sends are plans for reuse

• The ”Don’t ask, tell” Principle

• Tests are your life ensurance

• Polymorphism

3

http://books.pharo.org
https://github.com/SquareBracketAssociates/LearningOOPWithPharo

About this book

In addition we will also present

• Tests

• Software refactorings

Growing software

Often books present a problem and its solution. Now for non trivial prob-
lems, the solution does not fall from the sky or get developed in one stroke
but it is the constant evolution of a first solution that evolves over time.
Such an evolution is often difficult and tedious because the developer jumps
from one stable state to a situation where his code may not work anymore.
This is where Test Driven Design and refactorings really help. Test Driven
Design helps focusing on new features and captures them as executable en-
tities: tests. Refactorings helps by transforming code without breaking its
invariants. Note that tests do not forbid to break code, they help identifying
when previous invariants or constraints got violated. Sometimes violated
tests identify a bug but they may be broken just because the requirements
changed and that the tests should be updated. In this book, I wanted to see
how software grows in little steps. This is what I do frequently during my
coding sessions and I think that this is important to cover the hidden paths
in software creation.

Syntax, blocks and iterators

Since we need a language to express our programs, we will teach you the
syntax of Pharo. In particular we will use some simple chapters to get you
started.

Now in a nutshell, you should know that the Pharo syntax

• fits in one postcard and

• is based on objects, messages and closures.

Note that closures are not a recent addition to the language but a central
cornerstone. Closures are the foundation for conditional and loops. They
enable this ’messages all over the place’ syntax as well as really powerful
iterators.

1.4 Typographic conventions

Pharo expressions or code snippets are represented either in the text as
'Hello' and 'Hello' reversed, or for more substantial snippets, as fol-
lows:

'Hello'

4

1.5 Videos

When we want to show the result of evaluating an expression, we show the
result after three chevrons >>> on the next line, like so:

'Hello' reversed
>>> 'olleH'

Whenever we feel the text makes a point that is important or technical enough
to be highlighted, we will do so with a thick bar:

Important This is a point that is worth drawing some more attention.

Finally, the coffee cups highlight some points to take away and serve as a
concise summary of the sections :

 If you skim through a section, take a few seconds to check for coffee cups!

1.5 Videos

While reading this book you can also use some of the videos produced for the
Pharo mooc. All the videos are available at http://mooc.pharo.org. I strongly
suggest to watch the videos explaining how to use and interact with the envi-
ronment.

1.6 Thanks

I would like to thanks Morgane Pigny, Anne Etien, Quentin Ducasse, Sven
van Caekenberghe, Hayatou Oumarou, Kateryna Aloshkina, Ricardo Pacheco,
Olivier Auverlot, Mariette Biernacki, Herby Vojcik, Denis Kudriashov, Holger
Freyther, Dimitris Chloupis, Amal Noussi, René Paul Mages, Hannes Hirsel,
Lorenzo Solano Martinez for their great feedback. Alexandre Bergel for his
examples on messages. Olivier Auverlot for his constant enthousiam and for
TinyChat. Guillermo Polito for the idea of file and directory example. Damien
Pollet for this great template and the new LAN implementation and the nu-
merous makefile implementation and Pillar help.

5

http://mooc.pharo.org

Part I

Getting in touch with Pharo

CHA P T E R 2
Pharo syntax in a nutshell

In this chapter, we start on a simple path to get you to understand the most
important parts of the Pharo syntax: messages, blocks and methods. This chap-
ter is freely inspired from Sven van Caeckenberghe’s gentle syntax introduc-
tion, and I thank him for giving me the permission to reuse his ideas.

In Pharo, everything is an object and computation happens by sending mes-
sages to objects. Objects are created by sending messages to particular ob-
jects named classes, which define the structure and behavior of the objects
they create, also known as their instances.

2.1 Simplicity and elegance of messages

Messages are central to computation in Pharo. While their syntax is quite
minimalist, it is very expressive and structures most of the language.

There are three kinds of messages: unary, binary, and keyword-based.

Sending a message & the receiver

Let’s first look at an example of sending a message to an object:

'hello' reversed

What this means is that the message reversed is sent to the literal string
'hello'. In fact, the string 'hello' is called the receiver of the message; the
receiver is always the leftmost part of a message.

9

Pharo syntax in a nutshell

Figure 2-1 Executing an expression in Playground.

Evaluating code and convention for showing results

In Pharo, code can be evaluated from anywhere you can type and select text;
the system provides various interactive ways to evaluate code and look at the
result. In this book, we will show the result of an expression directly after it,
using three chevrons >>>.

Evaluating the piece of code in the previous example yields a new string with
the same characters in reverse order:

'hello' reversed
>>> 'olleh'

Figure 2-1 describes that we edited an expression and executed in with Play-
ground.

Other messages & return values

Our 'hello' string understands many other messages than reversed:

'hello' asUppercase
>>> 'HELLO'

As the name implies, the asUppercasemessage returns yet another string
'HELLO', which has the same contents as the receiver with each character
converted to upper case. However, messages sent to strings do not always
return strings; other kinds of values are possible:

'hello' first
>>> $h

'hello' size
>>> 5

10

2.1 Simplicity and elegance of messages

The message first returns the first element of the string: a character. Lit-
eral characters in Pharo syntax are expressed by the dollar sign $ immedi-
ately followed by the character itself. The message size returns the number
of elements in the string, which is an integer.

Strings, characters, integers are objects, because in Pharo everything is an
object. Also, messages always return something, even if the returned value is
not used. One might say that a message can return any value, as long as it’s
an object.

The selector & unary messages

All messages we saw so far have the same receiver, the string 'hello'; how-
ever, the computations were different because the messages differ by their
name, or to use the technical term, by their selector. In the syntax of a mes-
sage, the selector always comes right after the receiver; the message-sending
syntax is just the white space in between!

Those messages are called unary because they involve only one object: their
receiver; they do not take any arguments. Syntactically, the selectors of
unary messages must be alphabetic words; the convention to make up longer
selectors is to use lower camel case, preferring asUppercase over as_upper-
case or AsUPPERCASE.

A first keyword-based message

Messages often need to pass arguments to the receiver so that it can perform
its task; this is what keyword-based messages are for.

As an example, instead of using first, we could use the message at:, with
an explicit position as a parameter:

'hello' at: 1
>>>$h

The selector at: consists of a single keyword that ends with a colon, sig-
nifying that it should be followed by an argument; in this case, an integer
indicating which element we want to access. Pharo counts indices starting
from 1; therefore the message at: 2 will access the second element of the
receiver.

'hello' at: 2
>>>$e

Keyword-based messages with multiple arguments

To pass more than one argument, a single message can have as many colon-
terminated keywords as necessary, each followed by an argument, like this:

11

Pharo syntax in a nutshell

'hello' copyFrom: 1 to: 3
>>> 'hel'

This is one single message, whose selector is really copyFrom:to:. Note how
naturally it reads and how, with well-chosen terms, each keyword of the se-
lector documents the argument that follows it.

In the syntax, you are free to use as much white space as needed between the
keywords and the arguments, and like unary messages, the convention is to
name each keyword using lower camel case.

Binary messages

Binary messages visually differ from the other two kinds because their se-
lectors can only be composed of symbols. They always expect a single argu-
ment, even though they do not end in a colon.

The main use of binary messages is as arithmetic operations, for instance
sending the message + to the integer 1, with 2 as argument:

1 + 2

But there are some other widely-used binary messages outside of arithmetics;
for example, the message (selector) for string concatenation is a single comma:

'Hello' , ' Pharoers'
>>> 'Hello Pharoers'

Here, the receiver is 'Hello' and ' Pharoers' is the argument.

 The receiver is the object to which a message is sent; it is always first in a message,

followed by the selector and arguments.

 Unary messages look like words and have no parameters beside their receiver. Bi-

nary messages have selectors made of symbols and have one parameter. Keyword

messages take a parameter after each colon in their selector.

 A message is composed of a receiver, a message name, called its selector and

optional arguments. By language abuse, we sometimes use message when in fact

we mean the selector of the message. , is a message selector and 'a' ,'b' is a

message.

 The preferred naming convention for unary and keyword selectors is lower camel

case, likeThis:orThat:.

2.2 Which message is executed first?

Simpler messages take precedence over the more complex ones. This very
simple rule determines execution order when messages of different kinds ap-
pear in the same expression. This means that unary messages are evaluated
first, then binary messages, and finally keyword-based messages.

12

2.3 Sending messages to classes

Together, the message syntax and precedence rules keep complex expres-
sions elegant and readable:

'string' asUppercase copyFrom: -1 + 2 to: 6 - 3
>>> STR

When message precedence does not match what you mean, you can force the
execution order using parentheses. In the following example, the expression
inside the parentheses is evaluated first; this yields a three-character string
'STR', which then receives the message reversed.

('string' asUppercase first: 9 / 3) reversed
>>> 'RTS'

Finally, note how copyFrom:to: and first: were sent to the result of asUp-
percase. All messages are expressions whose result can be the receiver of a
subsequent message; this is called message chaining. Unless the precedence
rule applies, chained messages execute in reading order, from left to right.
This is quite natural for unary messages:

'abcd' allButFirst reversed
>>> 'dcb'

'abcd' reversed allButFirst
>>> 'cba'

Note however that the chaining rule applies without exception, even to bi-
nary messages that look like arithmetic operators:

1 + 2 * 10
>>> 30

Finally, keyword messages cannot be chained together without using paren-
theses, since the chain would look like a single big keyword message.

2.3 Sending messages to classes

Where do new objects come from? Well, in Pharo, object creation is just an-
other form of computation, so it happens by sending a message to the class
itself. For example, we can ask the class String to create an empty string by
sending it the message new.

String new
>>> ''

Classes are really objects that are known by name, so they provide a useful
entry point to the system; creating new objects is just a particular use-case.
Some classes understand messages that return specific instances, like the
class Float that understands the message pi.

13

Pharo syntax in a nutshell

Float pi
>>> 3.141592653589793

 The naming convention for class names is upper camel case, LikeThis; this is the
convention for all non-local names, i.e. shared or global variables.

2.4 Local variables and statement sequences

Local variables are declared by writing their name between vertical bars;
their value can be set using the assignment statement :=. Successive state-
ments are separated using a period, which makes them look like sentences.

| anArray |
anArray := Array new: 3.
anArray at: 1 put: true.
anArray at: 2 put: false.
anArray
>>> #(true false nil)

In the code above, a new three-element array is created, and a reference to it
is stored in anArray. Then, its first two elements are set using the at:put:
message, leaving the last element uninitialized; indexing is one-based, like
normal humans count.

The final statement determines the value of the whole sequence; it is shown
using the syntax for literal arrays #(…). The first element is the boolean
constant true, the second its counterpart false. Uninitialised elements re-
main nil, the undefined object constant.

 The first element of a collection is at index 1.

 The naming convention for local variables is lower camel case; variable names

often start with an indefinite article, since they refer to otherwise anonymous ob-

jects.

 There are only six reserved keywords, and all are pseudo-variables: the true, false,
and nil object constants, and self, super and thisContext, which we talk

about later.

2.5 About literal objects

Most objects in Pharo are created programmatically, by sending a message
like new to a class. In addition, the language syntax supports creating certain
objects by directly expressing them in the code. For example the expression
#(true false nil) is equivalent to the previous snippet using Array new.

In the same way, $A is equivalent to Character codePoint: 65:

Character codePoint: 65
>>> $A

14

2.6 Sending multiple messages to the same object

2.6 Sending multiple messages to the same object

We often need to send multiple messages to the same receiver, in close suc-
cession. For instance, to build a long string without doing too many concate-
nations, we use a stream:

| aStream |
aStream := (String new: 100) writeStream.
aStream nextPutAll: 'Today, '.
aStream nextPutAll: Date today printString.
aStream contents
>>> 'Today, 28 January 2017'

Repeating aStream is tedious to read. To make this flow better, we group the
three messages into a message cascade, separating them with semicolons, and
stating the receiver only once at the beginning:

| aStream |
aStream := (String new: 100) writeStream.
aStream

nextPutAll: 'Today, ';
nextPutAll: Date today printString;
contents

>>> 'Today, 28 January 2017'

Like with statement sequences, the cascade as a whole returns the value of
its last message. Here is another example and its cascaded version:

| anArray |
anArray := Array new: 2.
anArray at: 1 put: true.
anArray at: 2 put: false.
anArray
>>> #(true false)

(Array new: 2)
at: 1 put: true;
at: 2 put: false;
yourself

>>> #(true false)

The three indented messages form a cascade; they are all sent to the same
object, the new array. The last message, yourself, is particularly useful to
conclude cascades, because it returns the object it is sent to. This is neces-
sary in this case because the at:put: message would return the assigned
element, not the array.

15

Pharo syntax in a nutshell

2.7 Blocks

Square brackets [and] specify blocks (also known as lexical closures), pieces
of code to be executed later on.

In the following example, the adder local variable is assigned a one argument
block. The code inside the block describes the variables it accepts :x and the
statements to be executed when it is evaluated x + 1. Evaluating a block is
done by sending a message, value: with an actual object as argument. The
argument gets bound to the variable and the block is executed, resulting in
101.

| adder |
adder := [:x | x + 1].
adder value: 100
>>> 101
adder value: 200
>>> 201

Important Blocks are technical lexical closures. Now in a first under-
standing, they represent kind of anonymous methods that can be sorted,
passed as arguments and executed on demand using the messages value,
value:...

2.8 Control structures

Blocks are used to express all control structures, from standard conditionals
and loops to the exotic application specific ones, using the normal messaging
syntax. For example loops and conditions are all expressed using the mes-
sage presented previously. There are many loops and conditional in Pharo
but they are all using the same principle: a block is passed as argument and
the loop definition defines when the block should be executed.

The message timesRepeat: executes multiple time its argument (a block).
Here we multiply by two a number 10 times.

n := 1.
10 timesRepeat: [n := n * 2].
n
>>> 1024

Conditionals are expressed by sending one of the messages ifTrue:, if-
False:, ifTrue:ifFalse:, or ifFalse:ifTrue: to the result of a boolean
expression.

(17 * 13 > 220)
ifTrue: ['bigger']
ifFalse: ['smaller']

>>>'bigger'

16

2.9 Methods

Figure 2-2 Reading or editing a method using a code browser. Topleft pane: list

of packages then list of classes then protocols then method lists - middle pane:

method definition. Last pane: Quality Assistant.

The message do: allows one to express a loop over a sequence of objects: a
block is executed on each of the elements.

Let us see how we can count the number of character i in a given string. On
each character we check if the character is an $i and increase the counter
value if this is the case.

| count |
count := 0.
'Fear is the little-death that brings total obliteration'

do: [:c | c == $i ifTrue: [count := count + 1]].
count
>>> 5

2.9 Methods

Imagine that we want the following behavior: checking that all the objects of
a collection holds the given property.

Here we check that all the numbers in the array are even numbers.

#(2 4 8 16 32) allSatisfy: [:each | each even]
>>> true

17

Pharo syntax in a nutshell

But the following is false because not all the numbers are odd.

#(1 2 3 4 5 6) allSatisfy: [:each | each odd]
>>> false

The message allSatisfy: is one of the many super powerful behavior im-
plemented in Collection. It is called an iterator.

Methods are edited one by one in a code browser, like the one shown in Fig-
ure 2-2.

The following code is the definition of the method allSatisfy:. The first
line specifies the method name, the selector, with names for all arguments.
Comments are surrounded by double quotes. Inside a method, self refers to
the object itself, the receiver.

Let us explain the implementation of such method. Using the message do:
we iterate over all elements of the collection. For each element we execute
block (a predicate) that returns a boolean value and act accordingly. As soon
as we get a false value, we stop and return an overall false value. If every
evaluation gave us true, we passed the whole test and can return true as
overall result.

allSatisfy: aBlock
"Evaluate aBlock with the elements of the receiver.
If aBlock returns false for any element return false.
Otherwise return true."
self do: [:each | (aBlock value: each) ifFalse: [^ false]].
^ true

In a method, the receiver (self) is the default return value of the whole
method. Using a caret (^) a method returns something else or even return
earlier. Here is the code of the method allSatify: on the class Collection.

2.10 Resources

This chapter showed you the key syntatic elements. If you want to get a
deeper understanding about the syntax please refer to the following mooc
videos. The Mooc on Pharo is available at http://mooc.pharo.org

Here are direct pointers to the videos we believe will help you to understand
the Pharo syntax and key messages:

• Syntax in a nutshell http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/

W1/C019SD-W1-S5-v2.mp4

• Understanding messages http://rmod-pharo-mooc.lille.inria.fr/MOOC/

Videos/W2/C019SD-W2-S1-v3.mp4

• Pharo for the Java Programmer http://rmod-pharo-mooc.lille.inria.fr/

MOOC/Videos/W2/C019SD-W2-S2-v3.mp4

18

http://mooc.pharo.org
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019SD-W1-S5-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019SD-W1-S5-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S1-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S1-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S2-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S2-v3.mp4

2.11 Conclusion

• Message precedence http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/

W2/C019SD-W2-S3-v3.mp4

• Sequence and cascade http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/

W2/C019SD-W2-S3-v3.mp4

• Blocks http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S6-v2.

mp4

• Loops http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S7-v2.

mp4

• Booleans and collections http://rmod-pharo-mooc.lille.inria.fr/MOOC/

Videos/W2/C019SD-W2-S8-v2.mp4

• Class and Method Definition http://rmod-pharo-mooc.lille.inria.fr/MOOC/

Videos/W1/C019SD-W1-S6-v3.mp4

• Understanding return http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/

W3/C019SD-W3-S11-v1.mp4

• Parentheses http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S9-v3.

mp4

• Yourself http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S10-v3.

mp4

• Variables http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S3-v3.

mp4

• Essential collections http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/

W3/C019SD-W3-S7-v3.mp4

• Iterators http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S9-v3.

mp4

2.11 Conclusion

You have three kinds of messages and the simpler are executed prior to more
complex one. Hence unary messages are executed before binary and binary
before keyword-based messages. Blocks are anonymous methods that can be
pass around and used to define control structures and loops.

You now know enough to read 95% of Pharo code. Remember, it is all just
messages being sent to objects.

19

http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S6-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S6-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S7-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S7-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S8-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S8-v2.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019SD-W1-S6-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019SD-W1-S6-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S11-v1.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S11-v1.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S9-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S9-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S10-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W2/C019SD-W2-S10-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S3-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S7-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S7-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S9-v3.mp4
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W3/C019SD-W3-S9-v3.mp4

CHA P T E R 3
Syntax summary

Six reserved words only

nil the undefined object
true, false boolean objects
self the receiver of the current message
super the receiver, in the superclass context
thisContext the current invocation on the call stack

Reserved syntactic constructs

"comment" comment
'string' string
#symbol unique string
$a, Character space the character a and a space
12 2r1100 16rC twelve (decimal, binary, hexadecimal)
3.14 1.2e3 floating-point numbers
#(abc 123) literal array with the symbol #abc and the number 123
{foo . 3 + 2} dynamic array built from 2 expressions
#[123 21 255] byte array
exp1. exp2 expression separator (period)
; message cascade (semicolon)
var := expr assignment
^ expr return a result from a method (caret)
[:e | expr] code block with a parameter
| var1 var2 | declaration of two temporary variables

21

Syntax summary

Message Sending

When we send a message to an object, the message receiver, the method is se-
lected and executed; the message returns an object. Messages syntax mimics
natural languages, with a subject, a verb, and complements.

Java Pharo
aColor.setRGB(0.2,0.3,0) aColor r: 0.2 g: 0.3 b: 0
d.put("1", "Chocolate"); d at: '1' put: 'Chocolate'

Three Types of Messages: Unary, Binary, and Keyword

A unarymessage is one with no arguments.

Array new
>>> anArray

#(4 2 1) size
>>> 3

new is an unary message sent to classes (classes are objects).

A binarymessage takes only one argument and is named by one or more
symbol characters from +, -, *, = , <, >, ...

3 + 4
>>> 7

'Hello' , ' World'
>>>'Hello World'

The +message is sent to the object 3 with 4 as argument. The string ’Hello’re-
ceives the message , (comma) with ' World' as the argument.

A keywordmessage can take one or more arguments that are inserted in the
message name.

'Pharo' allButFirst: 2==
>>> 'aro'

3 to: 10 by: 2
>>> (3 to: 10 by: 2)

The second example sends to:by: to 3, with arguments 10 and 2; this re-
turns an interval containing 3, 5, 7, and 9.

Message Precedence

Parentheses > unary > binary > keyword, and finally from left to right.

(15 between: 1 and: 2 + 4 * 3) not
>>> false

22

Messages + and * are sent first, then between:and: is sent, and not. The
rule suffers no exception: operators are just binary messages with no notion of
mathematical precedence. 2 + 4 * 3 reads left-to-right and gives 18, not 14!

Cascade: Sending Muliple Messages to the Same Object

Multiple messages can be sent to the same receiver with ;.

OrderedCollection new
add: #abc;
add: #def;
add: #ghi.

The message new is sent to OrderedCollection which returns a new collec-
tion to which three add: messages are sent. The value of the whole message
cascade is the value of the last message sent (here, the symbol #ghi). To re-
turn the receiver of the message cascade instead (i.e. the collection), make
sure to send yourself as the last message of the cascade.

Blocks

Blocks are objects containing code that is executed on demand. They are the
basis for control structures like conditionals and loops.

2 = 2
ifTrue: [Error signal: 'Help']

#('Hello World')
do: [:e | Transcript show: e]

The first example sends the message ifTrue: to the boolean true (com-
puted from 2 = 2) with a block as argument. Because the boolean is true, the
block is executed and an exception is signaled. The next example sends the
message do: to an array. This evaluates the block once for each element,
passing it via the e parameter. As a result, Hello World is printed.

Common Constructs: Conditionals

In Java

if (condition)
{ action(); }
else { anotherAction();}

In Pharo

condition
ifTrue: [action]
ifFalse: [anotherAction]

In Java

23

Syntax summary

while (condition) { action();
anotherAction(); }

In Pharo

[condition] whileTrue: [action. anotherAction]

Common Constructs: Loops/Iterators

In Java

for(int i=1; i<11; i++){
System.out.println(i); }

In Pharo

1 to: 11 do: [:i | Transcript show: i ; cr]

In Java

String [] names ={"A", "B", "C"};
for(String name : names) {

System.out.print(name);
System.out.print(","); }

In Pharo

| names |
names := #('A' 'B' 'C').
names do: [:each | Transcript show: each, ' , ']

Collections start at 1. Messages at: index gives element at index and at:
index put: value sets element at index to value.

#(4 2 1) at: 3
>>> 1

#(4 2 1) at: 3 put: 6
>>>#(4 2 6)

Set new add: 4; add: 4; yourself
>>> aSet

Files and Streams

work := FileSystem disk workingDirectory.
stream := (work / 'foo.txt') writeStream.
stream nextPutAll: 'Hello World'.
stream close.
stream := (work / 'foo.txt') readStream.
stream contents.
>>> 'Hello World'
stream close.

24

CHA P T E R 4
Challenge yourself

In Pharo everything is an object and most computation happens by sending
messages to objects. In this chapter we propose a list of exercises to challenge
you with the syntax.

4.1 Challenge: Message identification

For each of the expressions below, fill in the answers:

• What is the receiver object?

• What is the message selector?

• What is/are the argument (s)?

• What is the result returned by this expression execution?

3 + 4

receiver:
selector:
arguments:
result:

Date today

receiver:
selector:
arguments:
result:

25

Challenge yourself

#('' 'World') at: 1 put: 'Hello'

receiver:
selector:
arguments:
result:

#(1 22 333) at: 2

receiver:
selector:
arguments:
result:

#(2 33 -4 67) collect: [:each | each abs]

receiver:
selector:
arguments:
result:

25 @ 50

receiver:
selector:
arguments:
result:

SmallInteger maxVal

receiver:
selector:
arguments:
result:

#(a b c d e f) includesAll: #(f d b)

receiver:
selector:
arguments:
result:

true | false

receiver:
selector:
arguments:
result:

26

4.2 Challenge: Literal objects

Point selectors

receiver:
selector:
arguments:
result:

4.2 Challenge: Literal objects

What kind of object does the following literal expressions refer to? It is the
same as asking what is the result of sending the classmessage to such ex-
pressions.

1.3

>

#node1

>

#(2 33 4)

>

'Hello, Dave'

>

[:each | each scale: 1.5]

>

$A

>

true

>

1

>

4.3 Challenge: Kind of messages

Examine the following messages and report if the message is unary, binary or
keyword-based.

27

Challenge yourself

1 log

>

Browser open

>

2 raisedTo: 5

>

'hello', 'world'

>

10@20

>

point1 x

>

point1 distanceFrom: point2

>

4.4 Challenge: Results

Examine the following expressions. What is the value returned by the execu-
tion of the following expressions?

1 + 3 negated

>

1 + (3 negated)

>

2 raisedTo: 3 + 2

>

| anArray |
anArray := #('first' 'second' 'third' 'fourth').
anArray at: 2

>

28

4.5 Challenge: unneeded parentheses

#(2 3 -10 3) collect: [:each | each * each]

>

6 + 4 / 2

>

2 negated raisedTo: 3 + 2

>

#(a b c d e f) includesAll: #(f d b)

>

4.5 Challenge: unneeded parentheses

Putting more parentheses than necessary is a good way to get started. Such
practice however leads to less readable expressions. Rewrite the following
expressions using the least number of parentheses.

x between: (pt1 x) and: (pt2 y)

...

((#(a b c d e f) asSet) intersection: (#(f d b) asSet))

...

(x isZero)
ifTrue: [....]

(x includes: y)
ifTrue: [....]

...

(OrderedCollection new)
add: 56;
add: 33;
yourself

29

Challenge yourself

...

((3 + 4) + (2 * 2) + (2 * 3))

...

(Integer primesUpTo: 64) sum

...

('http://www.pharo.org' asUrl) retrieveContents

...

30

CHA P T E R 5
Developing a simple counter

To get started in Pharo, we invite you to implement a simple counter by fol-
lowing the steps given below. In this exercise you will learn how to create
packages classes, methods, instances. You will learn how to define tests and
more. This simple tutorial covers most of the important actions that we do
when developing in Pharo.

Note that the development flow promoted by this little tutorial is traditional
in the sense that you will define a package, a class, then define its instance
variable then define its methods and finally execute it. The companion video
follows also such programming development flow. Now in Pharo, developers
often follow a totally different style (that we call live coding) where they ex-
ecute an expression that raises errors and they code in the debugger and let
the system define some instance variables and methods on the fly for them.
Once you will have finished this tutorial, you will feel more confident with
Pharo and we strongly suggest you to try the other style by following the sec-
ond video showing such different development practices.

5.1 Our use case

Here is our use case: we want to be able to create a counter, increment it
twice, decrement it and check that its value is correct. It looks like this lit-
tle use case will fit perfectly a unit test - you will define one later.

| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

31

Developing a simple counter

Figure 5-1 Package created and class creation template.

Now we will develop all the mandatory class and methods to support this
scenario.

5.2 Create your own class

In this part, you will create your first class. In Pharo, a class is defined in a
package. You will create a package then a class. The steps we will do are the
same ones every time you create a class, so memorize them well.

Create a package

Using the Browser create a package. The system will ask you a name, write
MyCounter. This new package is then created and added to the list. Figure
5-1 shows the result of creating such a package.

Create a class

Creating a class requires four steps. They consist basically in editing the class
definition template to specify the class you want to create.

• By default, the system helps you to define a subclass of the class Ob-
ject. This is why it is written Object subclass: #NameOfSubclass.

32

5.3 Define protocols and methods

• Class Name. You should fill in the name of your class by replacing the
word NameOfSubclass with the word Counter. Take care that the
name of the class starts with a capital letter and that you do not re-
move the #sign in front of NameOfClass. This is because the class we
want to create does not exist yet, so we have to give its name, and we
use a Symbol (a unique string in Pharo) to do so.

• Instance variable definition. Then, you should fill in the names of the
instance variables of this class. We need one instance variable called
count. Take care that you leave the string quotes!

• Class variable definition. As we do not need any class variable make
sure that the argument for the class instance variables is an empty
string classInstanceVariableNames: ''.

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
package: 'MyCounter'

Now we should compile it. We now have a filled-in class definition for the
class Counter. To define it, we still have to compile it. Therefore, select the
accept menu item. The class Counter is now compiled and immediately
added to the system.

Figure 5-2 illustrates the resulting situation that the browser should show.

The tool runs automatically some code critic and some of them are just inac-
curate, so do not care for now.

As we are disciplined developers, we add a comment to Counter class by
clicking Comment button. You can write the following comment:

Counter is a simple concrete class which supports incrementing and
decrementing a counter.

Its API is
- decrement, increment
- count
Its creation API is message withValue:

Select menu item ’accept’ to store this class comment in the class.

5.3 Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

The class we have defined has one instance variable named count. You should
remember that in Pharo, (1) everything is an object, (2) instance variables

33

Developing a simple counter

Figure 5-2 Class created.

are private to the object, and (3) the only way to interact with an object is by
sending messages to it.

Therefore, there is no other mechanism to access the instance variable val-
ues from outside an object than sending a message to the object. What you
can do is to define messages that return the value of the instance variable.
Such methods are called accessors, and it is a common practice to always de-
fine and use them. We start to create an accessor method for our instance
variable count.

A method is usually sorted into a protocol. These protocols are just a group
of methods without any language semantics, but convey important nav-
igation information for the reader of your class. You get protocol named:
'testing' for method performing tests, 'printing' for methods displaying
the object, 'accessing' for simple accessor methods and so on.

Although protocols can have any name, Pharo programmers follow certain
conventions for naming these protocols. But don’t be stressed if you do not
name well your protocols.

34

5.3 Define protocols and methods

Create a method

Now let us create the accessor methods for the instance variable count. Start
by selecting the class Counter in a browser, and make sure that you are edit-
ing the instance side of the class (i.e., we define methods that will be sent to
instances) by deselecting the Class side radio button.

Create a new protocol by bringing the menu of methods protocol list: click
on the third list from the left. Select the newly created protocol. Then in
the bottom pane, the edit field displays a method template laying out the
default structure of a method. As a general hint, double click at the end of
or beginning of the text and start typing your method. Replace the template
with the following method definition:

count
"return the current value of the value instance variable"
^ count

This defines a method called count, taking no arguments, having a method
comment and returning the instance variable count. Then choose accept in
the menu to compile the method. You can now test your new method by typ-
ing and evaluating the next expression in a Playground, or any text editor.

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialised instance variables). After-
wards we will create instances with a reasonable default initialisation value.

Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to 7:

The snippets shows that the counter effectively contains its value.

| c |
c := Counter new count: 7.
c count
>>> 7

This setter method does not currently exist, so as an exercise write the method
count: such that, when invoked on an instance of Counter, instance vari-
able is set to the argument given to the message. Test your method by typing
and evaluating the expression above.

35

Developing a simple counter

5.4 Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.
For example if we have turned the expression above into a test we could have
checked automatically that our new method is correctly working.

To define a test case we will define a class that inherits from TestCase. There-
fore define a class named CounterTest as follows:

TestCase subclass: #CounterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MyCounter'

Now we can write a first test by defining one method. Test methods should
start with test to be automatically executed by the TestRunner or when you
press on the icon of the method. Now to make sure that you understand in
which class we define the method we prefix the method body with the class
name and >>. CounterTest>>means that the method is defined in the class
CounterTest.

Define the following method. It first creates an instance, sets its value and
verifies that the value is correct. The message assert: is a special message
verifying if the test passed or not.

CounterTest >> testCountIsSetAndRead
| c |
c := Counter new.
c count: 7.
self assert: c count = 7

Verify that the test passes by executing either pressing the icon in front of
the method or using the TestRunner available in the Tools menu (selecting
your package). Since you have a first green test. This is a good moment to
save your work.

5.5 Saving your work

Several ways to save your work exist.

• Using plain files. You can save the class or a method by clicking on it
and selecting the fileout menu item. You will get a file containing the
source code on your hard-disk - This is not the favorite way to save
your code.

• Using a version control system. It is better to use a version control sys-
tem. In Pharo you can use Monticello and Git (even if it is more for ad-
vanced users).

36

Figure 5-3 Selecting a new kind of repository to the list of possible places to

commit the package.

Figure 5-4 Editing the repository information.

Developing a simple counter

In this chapter, we explain the simplest way to get you done. Note that the
complete set of Pharo packages is managed via Monticello (which is a dis-
tributed versioning control system - there are chapters in Pharo by Exam-
ple and Deep into Pharo books http://books.pharo.org).

Use theMonticello Browser (available in Tools) to save your work. You can
save a package locally on your hard-disk or on a remote server on the web
such as http://www.smalltalkhub.com

Saving using Monticello

Using Monticello you can save your work:

• Locally. You can store your packages in a folder on your disc (use direc-
tory as a kind of repository below).

• Remotely. Using an account on a free server such http://www.smalltalkhub.

com/. You can save your work and share it with others.

Note each time you load or save a package, this package is also be stored in
the folder named ’package-cache’ on your hard-disk.

Add a repository

Go to http://www.smalltalkhub.com/ and create a member account then regis-
ter a new project. You get an HTTP entry that refers to your project. Define
a new HTTP repository using the Monticello Browser as shown by Figures 5-3
and 5-4.

Figure 5-3 shows that you package is dirty: this is indicated with the little ’*’
in front of the packages.

Example. As authors we are saving the examples for this chapter as a spe-
cial team named PharoMooc in the Counter project so our information is the
following:

MCHttpRepository
location: 'http://smalltalkhub.com/mc/PharoMooc/Counter/main'
user: ''
password: ''

Now for you, you should adapt the following template to use your own infor-
mation:

MCHttpRepository
location: 'http://smalltalkhub.com/mc/YourAccount/YourProject/main'
user: 'YourAccountID'
password: 'YourAccountPassword'

38

http://books.pharo.org
http://www.smalltalkhub.com
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/

5.6 Adding more messages

Saving your package

To save your work, simply select your package and the repository you want
to save it to and save it using the Save button. This will open a dialog where
you can give a comment, version numbers and blessing. From then on, other
people can load it from there, in the same way that you would use cvs or
other multi-user versioning systems. Saving the image is also a way to save
your working environment, but not a way to version and publish it in a way
that can be easily shared.

You can of course both publish your package (so that other people can load
it, and that you can compare it with other versions, etc.) and save your im-
age (so that next time that you start your image you are in the same working
environment).

5.6 Adding more messages

Before implementing the following messages we define first a test. We define
one test for the method increment as follows:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count = 2

Here we create a counter, set its value to 0, send it the message increment
two times and verify that we get a counter of value 2.

Now you should implement some more methods.

• Propose a definition for the method increment and implement it.

• Implement also a new test method for the method decrement.

• Define the method decrement place it together with increment in the
protocol 'operation'.

Here are the possible definitions for such methods.

Counter >> increment
count := count + 1

Counter >> decrement
count := count - 1

Run your tests they should pass (as shown in Figure 5-5). Again this is a good
moment to save your work. Saving at point where tests are green is always a
good process.

39

Developing a simple counter

Figure 5-5 Class with green tests.

5.7 Better object description

When you select the expression Counter new and print its result (using the
Print it menu of the editor) you obtain a simple string 'a Counter'.

Counter new
>>> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', self count printString.

Note that the method printOn: is used when you print an object using print
it (See Figure 5-6). In addition this method is invoked when you click on self
in an inspector. An inspector is an object to interact and modify objects. It is
really powerful during development.

40

5.8 Instance initialization method

Figure 5-6 Better description doing a Print It (cmd + P).

5.8 Instance initialization method

Right now the initial value of our counter is not set as the following expres-
sion shows it.

Counter new count
>>> nil

Let us write a test checking that a newly created instance has 0 as a default
value.

CounterTest >> testValueAtCreationTimeIsZero
self assert: Counter new count = 0

If you run it, it will turn yellow indicating a failure (a situation that you an-
ticipated but that is not correct) - by opposition to an error which is an antic-
ipated situation leading to failed assertion.

Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initializemes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is sent to
an instance of Counter (like increment) and decrement. The initialize
method is responsible to set up the default value of instance variables.

Therefore at the instance side, you should create a protocol initializa-
tion, and create the following method (the body of this method is left blank.
Fill it in!).

Counter >> initialize
"set the initial value of the value to 0"

count := 0

Now create a new instance of class Counter. Is it initialized by default? The
following code should now work without problem:

41

Developing a simple counter

Counter new increment

and the following one should return 2

Counter new increment; increment; count
>>> 2

Again save your work

5.9 Conclusion

In this chapter you learned how to define packages, classes, methods, and
define tests. The flow of programming that we chose for this first tutorial is
similar to most of programming languages. In Pharo you can use a different
flow that is based on defining a test first, executing it and when the execu-
tion raises error to define the corresponding classes, methods, and instance
variables often from inside the debugger. We suggest you now to redo the
exercise following the second companion video.

42

CHA P T E R 6
Tests, tests and tests

In this chapter we start by showing that tests are simple. Second we present
test driven design - basically what we will try to do systematically in this
book. Then we discuss why we test, and what makes a good test. We then
present a series of small examples showing how to use SUnit.

6.1 Writing a test in 2 minutes

A test is a context, a stimulus and an assertion (verification that we get the
correct state). Here is an example on sets. Remember that sets are mathe-
matical entities having only one occurrence of their elements.

First we test that adding an element changes the size of the set.

• Context: we take an empty set.

• Stimulus: we add $A into the empty set.

• Assertion: the set has one element.

Another test is that a set only contains only one occurence of one element.

• Context: we take an empty set.

• Stimulus: we add $A into the empty set.

• Assertion: the set has one element.

• Stimulus: we add $A into the empty set.

• Assertion: the set has still one element.

43

Tests, tests and tests

How do we declare a test in Pharo?

This is really easy to declare one test: we define one class (that will host mul-
tiple test definitions) and one method per test.

Here the class MyExampleSetTest should inherit from TestCase. It is the
place to define the tests related to the class Set.

TestCase subclass: #MyExampleSetTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MySetTest'

Now we can define one test expression as a method. There is one constraint:
the method selector should start with test.

MyExampleSetTest >> testAddTwice
| s |
s := Set new.
self assert: s isEmpty.
s add: $A.
self assert: s size equals: 1.
s add: $A.
self assert: s size equals: 1.

Then using the Test runner or pressing on icons of the Pharo browser (as
shown in Figure 6-1), you will be able to execute the method testAddTwice
and it will tell you if it passes or fails (i.e., if its assertions are true). Now that
you know that writing a test is not complex. Let us look a bit at the theory
before going into more details.

 A test is a context, a stimulus and an assertion (verification that we get the correct

state).

6.2 Test Driven Design

The interest in testing and Test Driven Development is not limited to Pharo.
Automated testing has become a hallmark of the Agile software development
movement, and any software developer concerned with improving software
quality would do well to adopt it. Indeed, developers in many languages have
come to appreciate the power of unit testing.

Neither testing, nor the building of test suites, is new. By now, everybody
knows that tests are a good way to catch errors. By making testing a core
practice and by emphasizing automated tests, Extreme Programming has
helped to make testing productive and fun, rather than a chore that pro-
grammers dislike.

The Pharo community has a long tradition of testing because of the incre-
mental style of development supported by its programming environment. In

44

6.3 Why testing is important

traditional Pharo development, a programmer writes tests in a playground
as soon as a method was finished. Sometimes a test would be incorporated as
a comment at the head of the method that it exercised, or tests that needed
some set up would be included as example methods in the class. The prob-
lem with these practices is that tests in a playground are not available to
other programmers who modify the code. Comments and example meth-
ods are better in this respect, but there is still no easy way to keep track of
them and to run them automatically. Tests that are not run do not help you
to find bugs! Moreover, an example method does not inform the reader of
the expected result: you can run the example and see the (perhaps surpris-
ing) result, but you will not know if the observed behaviour is correct.

Using a testing framework such as SUnit is valuable because it allows us to
write tests that are self-checking: the test itself defines what the correct
result should be. It also helps us (1) to organize tests into groups, (2) to de-
scribe the context in which the tests must run, and (3) to run a group of tests
automatically. As you saw, in less than two minutes you can write tests using
SUnit, so instead of writing small code snippets in a playgound, we encour-
age you to use SUnit and get all the advantages of stored and automatically
executable tests.

6.3 Why testing is important

Now that you see that writing tests is simple. Let’s step back and analyze
the situation. Unfortunately, many developers believe that tests are a waste
of their time. After all, they do not write bugs, only other programmers do
that. Most of us have said, at some time or other: I would write tests if I had
more time. If you never write a bug, and if your code will never be changed
in the future, then indeed tests are a waste of your time. However, this most
likely also means that your application is trivial, or that it is not used by you
or anyone else. Think of tests as an investment for the future: having a test
suite is quite useful now, but it will be extremely useful when your applica-
tion, or the environment in which it runs, changes in the future.

Tests play several roles:

• First, they provide documentation of the functionality that they cover.
This documentation is active: watching the tests pass tells you that the
documentation is up to date.

• Second, tests help developers to confirm that some changes that they
have just made to a package have not broken anything else in the sys-
tem, and to find the parts that break when that confidence turns out to
be misplaced.

• Finally, writing tests during, or even before, programming forces you
to think about the functionality that you want to design, and how it
should appear to the client code, rather than about how to implement it.

45

Tests, tests and tests

By writing the tests first, i.e., before the code, you are compelled to state the
context in which your functionality will run, the way it will interact with
the client code, and the expected results. Your code style will definitively
improve.

Several software development methodologies such as eXtreme Programming
and Test-Driven Development (TDD) advocate writing tests before writing
code. This may seem to go against your deep instincts as software develop-
ers. All we can say is: go ahead and try it. Writing the tests before the code
helps you know what we want to code, helps you know when you are done,
and helps us conceptualize the functionality of a class and to design its inter-
face. Moreover, test-first development gives you the courage to change our
application, because you will know when you break something.

We cannot test all aspects of any realistic application. Covering a complete
application is simply impossible and is the goal of testing. Even with a good
test suite some bugs will still creep into the application, where they can lay
dormant waiting for an opportunity to damage your system. If you find that
this has happened, take advantage of it! As soon as you uncover the bug,
write a test that exposes it, run the test, and watch it fail. Now you can start
to fix the bug: the test will tell you when you are done.

6.4 What makes a good test?

Writing good tests is a skill that you can learn by practicing. Let us look at
the properties that tests should have to get the maximum benefit.

• Tests should be repeatable. You should be able to run a test as often as
you want, and always get the same answer.

• Tests should run without human intervention. You should be able to run
them unattended.

• Tests should tell a story. Each test should cover one aspect of a piece of
code. A test should act as a scenario that you or someone else can read
to understand a piece of functionality.

• Tests should have a change frequency lower than that of the functionality
they cover. You do not want to have to change all your tests every time
you modify your application. One way to achieve this is to write tests
based on the public interfaces of the class that you are testing. It is OK
to write a test for a private helper method if you feel that the method
is complicated enough to need the test, but you should be aware that
such a test may have to be changed, or thrown away entirely, when
you think of a better implementation.

One consequence of such properties is that the number of tests should be
somewhat proportional to the number of functions to be tested: changing

46

6.5 SUnit by example

one aspect of the system should not break all the tests but only a limited
number. This is important because having 100 tests fail should send a much
stronger message than having 10 tests fail. However, it is not always possible
to achieve this ideal: in particular, if a change breaks the initialization of an
object, or the set-up of a test, it is likely to cause all of the tests to fail.

Now let’s go back and write a couple of tests using SUnit.

6.5 SUnit by example

We show a step by step example. We continue with the example that tests
the class Set. Try editing and compiling the code as we go along.

Pay attention: test classes are special classes. As subclasses of TestCase they
have a different behavior that normal classes: their methods which start
with test are automatically executed on newly created instances of the
class. This is what happens when you press the icon close to the method in
a class browser (as shown in Figure 6-1).

Step 1: Create the test class

We use the class MyExampleSetTest to group all the tests related to the class
Set. First you should create a new subclass of TestCase called MyExample-
SetTest.

TestCase subclass: #MyExampleSetTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MySetTest'

Step 2: Write a test method

Let’s create some tests by defining some methods in the class MyExample-
SetTest. Each method represents one test. The names of the methods should
start with the string 'test' so that SUnit collects them into test suites. Test
methods take no arguments.

Define the following test method named testIncludes. It tests the in-
cludes: method of class Set. The test says that sending the message in-
cludes: 5 to a set containing 5 should return true.

MyExampleSetTest >> testIncludes
| full |
full := Set with: 5 with: 6.
self assert: (full includes: 5).
self assert: (full includes: 6)

As you see this is quite simple. Let’s continue.

47

Tests, tests and tests

Figure 6-1 Running SUnit tests from the System Browser: Just click on the round

little button close to the class or method.

Step 3: Run the test

The easiest way to run the tests is directly from the browser. Simply click
on the icon of the class name, or on an individual test method, or use the
Run tests (t) . The test methods will be flagged green or red, depending on
whether they pass or not (as shown in Figure 6-1).

Step 4: Write more tests

Let’s create more tests by defining some methods in the class MyExample-
SetTest.

The second test, named testOccurrences, verifies that the number of oc-
currences of 5 in full set is equal to one, even if we add another element 5
to the set.

MyExampleSetTest >> testOccurrences
| empty full |
empty := Set new.
full := Set with: 5 with: 6.
self assert: (empty occurrencesOf: 0) equals: 0.
self assert: (full occurrencesOf: 5) equals: 1.
full add: 5.
self assert: (full occurrencesOf: 5) equals: 1

Finally, we test that the set no longer contains the element 5 after we have
removed it.

48

6.5 SUnit by example

Figure 6-2 Running SUnit tests using the TestRunner.

MyExampleSetTest >> testRemove
| full |
full := Set with: 5 with: 6.
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

Note the use of the method TestCase >> deny: to assert something that
should not be true. aTest deny: anExpression is equivalent to aTest as-
sert: anExpression not, but is much more readable.

Step 5: Run all the tests

You can also select sets of test suites to run, and obtain a more detailed log of
the results using the SUnit Test Runner, which you can open by selecting the
menu World > Test Runner.

The Test Runner, shown in Figure 6-2, is designed to make it easy to execute
groups of tests.

The left-most pane lists all of the packages that contain test classes (i.e., sub-
classes of TestCase). When some of these packages are selected, the test
classes that they contain appear in the pane to the right. Abstract classes
are italicized, and the test class hierarchy is shown by indentation, so sub-
classes of ClassTestCase are indented more than subclasses of TestCase.
ClassTestCase is a class offering utilities methods to compute test cover-
age.

Open a Test Runner, select the package MySetTest, and click the Run Se-
lected button.

49

Tests, tests and tests

Step 6: Alternative ways to execute tests

You can also run a single test (and print the usual pass/fail result summary)
by executing a Print it on the following code: MyExampleSetTest run: #testRemove.

Some people include an executable comment in their test methods as in
testRemove below. For example the contents of the comment self run:
#testRemove can be executed: select the expression inside the comment
(but not the comment) and bring the menu to do a Do it. It will execute the
test.

MyExampleSetTest >> testRemove
"self run: #testRemove"
| empty full |
empty := Set new.
full := Set with: 5 with: 6.
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

Step 7: Looking at a bug

Introduce a bug in MyExampleSetTest >> testRemove and run the tests
again. For example, change 6 to 7, as in:

MyExampleSetTest >> testRemove
| empty full |
empty := Set new.
full := Set with: 5 with: 6.
full remove: 5.
self assert: (full includes: 7).
self deny: (full includes: 5)

The tests that did not pass (if any) are listed in the right-hand panes of the
Test Runner. If you want to debug one, to see why it failed, just click on the
name. Alternatively, you can execute one of the following expressions:

(MyExampleSetTest selector: #testRemove) debug

MyExampleSetTest debug: #testRemove

Step 8: Interpret the results

The method assert: is defined in the class TestAsserter. This is a super-
class of TestCase and therefore all other TestCase subclasses and is respon-
sible for all kinds of test result assertions. The assert: method expects a
boolean argument, usually the value of a tested expression. When the argu-
ment is true, the test passes; when the argument is false, the test fails.

There are actually three possible outcomes of a test: passing, failing, and rais-
ing an error.

50

6.6 The SUnit cookbook

• Passing. The outcome that we hope for is that all of the assertions
in the test are true, in which case the test passes. In the test runner,
when all of the tests pass, the bar at the top turns green.

• Failing. The obvious way is that one of the assertions can be false,
causing the test to fail.

• Error. The other possibility is that some kind of error occurs during
the execution of the test, such as a message not understood error or an
index out of bounds error. If an error occurs, the assertions in the test
method may not have been executed at all, so we can’t say that the test
has failed; nevertheless, something is clearly wrong!

In the test runner, failing tests cause the bar at the top to turn yellow, and are
listed in the middle pane on the right, whereas tests with errors cause the
bar to turn red, and are listed in the bottom pane on the right.

As an exercise, modify your tests to provoke both errors and failures.

6.6 The SUnit cookbook

This section will give you more details on how to use SUnit. If you have used
another testing framework such as JUnit, much of this will be familiar, since
all these frameworks have their roots in SUnit. Normally you will use SUnit’s
GUI to run tests, but there are situations where you may not want to use it.

About assert:equals:

Note that we either used both assert: aBoolean and assert: expression
equals: aValue. The second one provides nicer feedback when the asser-
tion fails. The two following lines are equals.

self assert: (empty occurrencesOf: 0) equals: 0.
self assert: (empty occurrencesOf: 0) = 0.

Using assert:equals: provides a better feedback when the test is failing
because we said explicitly that the result should be 0.

Other assertions

In addition to assert: and deny:, there are several other methods that can
be used to make assertions.

First, assert:description: and deny:description: take a second argu-
ment which is a message string that describes the reason for the failure, if it
is not obvious from the test itself.

Next, SUnit provides two additional methods, should:raise: and shouldnt:raise:
for testing exception propagation.

51

Tests, tests and tests

For example, you would use self should: aBlock raise: anException
to test that a particular exception is raised during the execution of aBlock.
The method below illustrates the use of should:raise:.

MyExampleSetTest >> testIllegal
| empty |
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #zork] raise: Error

Try running this test. Note that the first argument of the should: and shouldnt:
methods is a block that contains the expression to be executed.

Running a single test

Normally, you will run your tests using the Test Runner or using your code
browser. If you don’t want to launch the Test Runner from the World menu,
you can execute TestRunner open. You can also run a single test as follows:

MyExampleSetTest run: #testRemove
>>> 1 run, 1 passed, 0 failed, 0 errors

Running all the tests in a test class

Any subclass of TestCase responds to the message suite and builds a test
suite that contains all the methods whose names start with the string test.

To run the tests in the suite, send it the message run. For example:

MyExampleSetTest suite run
>>> 5 run, 5 passed, 0 failed, 0 errors

Must I subclass TestCase?

In JUnit you can build a TestSuite from an arbitrary class containing test*
methods. In SUnit you can do the same but you will then have to create a
suite by hand and your class will have to implement all the essential Test-
Casemethods like assert:. We recommend, however, that you not try to do
this. The framework is there: use it.

6.7 Defining a fixture

In the previous example, we defined the context in each test methods and it
was a bit boring to duplicate all the logic in any tests. In fact SUnit proposes
a solution to this.

52

6.8 Chapter summary

Step 1: Define the class and context

We can define the context using the two instance variables full and empty
that we will use to represent a full and an empty set.

TestCase subclass: #MyExampleSetTest
instanceVariableNames: 'full empty'
classVariableNames: ''
package: 'MySetTest'

Step 2: Setting a reusable context

The method TestCase >> setUp defines the context in which each of the
tests will run. The message setUp is sent before the execution of each test
method defined in the test class.

Define the setUpmethod as follows, to initialize the empty variable to refer
to an empty set and the full variable to refer to a set containing two ele-
ments.

MyExampleSetTest >> setUp
empty := Set new.
full := Set with: 5 with: 6

In testing jargon the context is called the fixture for the test.

Step 3: Write some test methods

Now the previous tests methods are much more compact and contain less
duplication.

MyExampleSetTest >> testIncludes
self assert: (full includes: 5).
self assert: (full includes: 6)

MyExampleSetTest >> testOccurrences
self assert: (empty occurrencesOf: 0) equals: 0.
self assert: (full occurrencesOf: 5) equals: 1.
full add: 5.
self assert: (full occurrencesOf: 5) equals: 1

MyExampleSetTest >> testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

6.8 Chapter summary

This chapter explained why tests are an important investment in the future
of your code. We explained in a step-by-step fashion how to define a few

53

Tests, tests and tests

tests for the class Set.

• To maximize their potential, unit tests should be fast, repeatable, in-
dependent of any direct human interaction and cover a single unit of
functionality.

• Tests for a class called MyClass belong in a class named MyClassTest,
which should be introduced as a subclass of TestCase.

• Initialize your test data in a setUpmethod.

• Each test method should start with the word test.

• Use the TestCasemethods assert:, deny: and others to make asser-
tions.

• Run tests!

As exercise, turn the examples given in the first chapter into tests.

54

CHA P T E R 7
Some collection katas with

words

This chapter proposes some little challenges around words and sentences as
a way to explore Pharo collections.

7.1 Isogram

An isogram is a word or phrase without a repeating letter. The following
words are examples of isograms in english and french:

• egoism, sea, lumberjacks, background, hacking, pathfinder, pharo

• antipode, altruisme, absolument, bigornaux

Isograms are interesting words also because they are often the basis of sim-
ple cifers. Isograms of length 10 are commonly used to encode numbers. This
way salespeople of products can get access to the original cost of the product
and control their sale.

Using the pathfinder cipher we can decide that p represents the number 1, a
represents the number 2 and so on. The price tag for an item selling for 1100
Euros may also bear the cryptic letters frr written on the back or bottom of
the tag. A salesman familiar with the pathfinder cipher will know that the
original cost of the item is 500 Euros and he can control his sale.

Since we will essentially manipulate strings, let us start with some basic
knowledge on strings.

55

Some collection katas with words

7.2 About strings

A string in Pharo is in fact an array of characters. We can access string ele-
ments using the message at: anIndex. Since all collections in Pharo have
their first elements at index 1, the message at: 1 returns the first element
of a string.

'coucou' at: 1
>>> $c

'coucou'at: 3
>>> $u

As with any collection, we can apply iterators such select:, do:, or col-
lect:. Here we select all the characters that are after, hence bigger, than
character $m.

'coucou' select: [:aChar | aChar > $m]
>>>'ouou'

We can also apply all kinds of operations on the collection. Here we reverse
it.

'coucou' reverse
>>> 'uocuoc'

We can also find the index of a string inside another one using the message
findString: aString startingAt: anIndex.

'coucou' findString: 'ou' startingAt: 1
>>> 2

'coucou' findString: 'ou' startingAt: 3
>>> 5

We simply present some of the possible messages that can be sent to a string.
We select some that you can use in the following or in the next chapter. Now
let us solve our problem to identify if a string is an isogram.

7.3 A solution using sets

We can do a simple (and not really efficient) implementation using sets. Sets
are collections that only contain one occurence of each element added to
them. Adding twice the same element only adds one.

Note that sets in Pharo can contain any objects, even sets themselves. This
is not the case in all languages. In Pharo, there is no restriction about set
elements.

You can convert a string into a set of characters sending the string the mes-
sage asSet.

56

7.3 A solution using sets

'coucou' asSet
>>> a Set($u $c $o)

Now this is your turn: Imagine how using a set of characters, you can deter-
mine if a string is a isogram.

Hints

If the size of a set with the contents of a string and this string are the same, it
means that the string does not contain any letter twice! Bingo we can simply
identify an isogram.

To get the size of a collection use the message size

'coucou' size
>>> 6

Now we convert 'coucou' into a set using the message asSet.

'coucou' asSet size
>>> 3

Note that the message asSet is equivalent to the following script:

| s1 |
s1 := Set new.
'coucou' do: [:aChar | s1 add: aChar].
s1
>>> a Set($u $c $o)

• Here we define a variable s1

• We iterate over all the characters of the string 'coucou', and we add
each character one by one to the set s1.

• We return the set.

• The set contains only three elements $c, $o, $u as expected.

Checking expression

So now we can get to the expression that verifies that 'pharo' is an isogram.

| s |
s := 'pharo'.
s size = s asSet size
>>> true

And that 'phaoro' is not!

57

Some collection katas with words

| s |
s := 'phaoro'.
s size = s asSet size
>>> false

Adding a method to the class String

Now we can define a new method to the class String. Since you may propose
multiple implementations, we postfix the message with the implementation
strategy we use. Here we define isIsogramSet

String >> isIsogramSet
"Returns true if the receiver is an isogram, i.e., a word using no

repetitive character."
"'pharo' isIsogramSet
>>> true"
"'phaoro' isIsogramSet
>>> false"

... Your solution here ...

And we test that our method is correct.

'pharo' isIsogramSet
>>> true

'phaoro' isIsogramSet
>>> false

Wait! We do not want to have to check manually all the time!

 When you verify two times the same things, better write a test! Remember you

write a test once and execute it million times!

7.4 Defining a test

To define tests we could have extended the StringTest class, but we prefer
to define a little class for our own experiment. This way we will create also
a package and move the methods we define as class extension to the that
package.

Important To define a method as a class extension of package Foo, just
name the protocol of the method *Foo.

We define the class GramCheckerTest as follow. It inherits from TestCase
and belong to the package LoopStarGram.

58

7.4 Defining a test

TestCase subclass: #GramCheckerTest
instanceVariableNames: ''
classVariableNames: ''
package: 'LoopStarGram'

Now we are ready to implement our first automated test for this chapter.

Test methods are special.

• A test method should start with 'test'.

• A test method is executed automatically when we press the icons dis-
playing the method.

• A test method can contain expressions such as self assert: aTrue-
Expression or self deny: aFalseExpression.

Here

• Our method is named testIsogramSetImplementation.

• We check (assert:) that ’pharo’ is an isogram i.e., that 'pharo' isIso-
gramSet returns true.

• We check (deny:) that ’phaoro’ is not an isogram i.e., that 'pharo'
isIsogramSet returns false.

GramCheckerTest >> testIsogramSetImplementation

self assert: 'pharo' isIsogramSet.
self deny: 'phaoro' isIsogramSet.

Important When you write a test, make sure that you test different situ-
ations or results. Why? Because imagine that your methods always return
true, you would never be sure that not all the string are isograms. So al-
ways check for positive and negative results.

Messages assert: and deny: are equivalent as follows: assert (something)
is equals to deny(something not) and assert (something not) is equivalent to
deny (something). Hence the following expressions are strictly equivalent.

self assert: 'phaoro' isIsogramSet not.
self deny: 'phaoro' isIsogramSet.

Testing several strings

Now we do not want to write a test per string. We want to test multiple strings
at the same time. For that we will define a method in the test class that re-
turns a collection of strings. Here we create a methods returning an array of
isograms.

59

Some collection katas with words

GramCheckerTest >> isograms
^ #('pharo' 'pathfinder' 'xavier' 'francois' 'lumberjacks'

'altruisme' 'antipode')

Then we define a new test method testAllIsogramSet that simply iterates
over the string array and for each verifies using assert: that the element is
indeed an isogram.

In Pharo, there are multiple ways to express loops on collection, the easiest
is to send the message do: to the collection. The do: message executes the
block to each element of the collection one by one.

 The do: message executes its argument taking each elements of the receiver

collection one by one. Note the way we express it, we ask the collection to iterate

on itself. Note also that we do not have to worry about the size of the collection

and the index of an element as this is often the case in other languages.

GramCheckerTest >> testAllIsogramSet

self isograms do: [:word |
self assert: word isIsogramSet]

Since we said that we should also tests negative let us to the same for non
isograms. We create another method that returns non isogram strings and
we enhance our testing method.

GramCheckerTest >> notIsograms
^ #('phaoro' 'stephane' 'idiot' 'freedom')

And we make our test using both.

GramCheckerTest >> testAllIsogramSetImplementation

self isograms do: [:word |
self assert: word isIsogramSet].

self notIsograms do: [:word |
self deny: word isIsogramSet]

7.5 Some fun: Obtaining french isograms

Now we would like to find some isograms in french. We stored on the github
repository of this book some resources as shown below containing french
words line by line. We would like to get all the lines. We will use ZnClient,
the HTTPClient that comes with Pharo. Since this is a lot of data, execute the
expression using the Inspect Itmenu or shortcut to get an inspector instead
of a simple Do It. You can try the other file which contains more than 330
000 french words.

60

7.6 Pangrams

(ZnClient new
get: 'https://raw.githubusercontent.com/SquareBracketAssociates/

LearningOOPWithPharo/
master/resources/listeDeMotsAFrancaisUTF8.txt') lines

(ZnClient new
get: 'https://raw.githubusercontent.com/SquareBracketAssociates/

LearningOOPWithPharo/
master/resources/listeDeMotsFrancaisFrGutUTF8.txt') lines

The expression above will give you an array of 336531 words (it is a bit slow
depending on your internet connection because it is lot of data).

Once you get the inspector opened, you can start to play with the data. Make
sure that you select self and in the text pane you can execute the following
expressions:

The first one will select all the words that are isogram and you will see them
in the second list that will appear on the right.

self select: #isIsogramSet

Now you can select again all the isogram longer or equal to 10.

self select: [:each | each size >= 10]

We have other ways to implement isograms and we will discuss such imple-
mentations in the next chapter. Now we will play with pangrams.

7.6 Pangrams

The definition of a pangram is the following: A Pangram or holoalphabetic sen-
tence for a given alphabet is a sentence using every letter of the alphabet at least
once.

Here are examples of english pangrams:

• the five boxing wizards jump quickly

• the quick brown fox jumps over the lazy dog

Let us write a test first. Yes we want to make sure that we will be able to con-
trol if our code is correct and we do not want to repeat typing the test.

GramCheckerTest >> testIsEnglishPangram

self assert: 'The quick brown fox jumps over the lazy dog'
isEnglishPangram.

self deny: 'The quick brown fox jumps over the dog'
isEnglishPangram

61

Some collection katas with words

Imagine a solution

Imagine that we have a collection or string representing the alphabet. A
solution is to check that the potential pangram string contains each of the
characters of the alphabet, as soon as we see that one character is missing we
stop and know that the sentence is not a pangram.

'The quick brown fox jumps over the lazy dog' isEnglishPangram
>>> true
'The quick brown fox jumps over the dog' isEnglishPangram
>>> false

A first version

Here is a first version. We define a variable isPangram that will represent
the information we know about the receiver. We set it to true to start. Then
we iterate over an alphabet character by character and as soon as the charac-
ter is not included in the receiver we set the variable to false. At the end we
return the variable isPangram.

String >> isEnglishPangram
"Returns true is the receiver is a pangram i.e., that it uses all

the characters of a given alphabet."

| isPangram |
isPangram := true.
'abcdefghijklmnopqrstuvwxyz' do: [:aChar |
(self includes: aChar)

ifFalse: [isPangram := false]
].

^ isPangram

This first implementation has a problem. Can you see which one? If the sen-
tence does not contain $a, we will know it immediately still we will look for
all the other letters. So this is clearly inefficient.

A better version

Instead for testing all characters, even if we know one is missing, what we
should do is to stop looking as soon as we identify that there is one missing
character and return the result.

The following definition is doing this and it deserves a word of explanation.

The expression ^ something returns the value something to the caller method.
The program execution exits at that point: it does not execute the rest of
method. The program execution returns to the method caller. Usually we
use ^ something as last statement of a method when they need to return
a special value. Now ^ anExpression can occur anywhere and in particu-

62

7.7 Handling alphabet

lar inside a loop. In such a case the loop is stopped, the method execution is
stopped and the value is returned.

String >> isEnglishPangram
"Returns true is the receiver is a pangram i.e., that it uses all

the characters of a given alphabet."

'abcdefghijklmnopqrstuvwxyz' do: [:aChar |
(self includes: aChar)

ifFalse: [^ false]
].

^ true

Note that we do not need the variable isPangram anymore. We return true
as last expression because we assume that if the execution arrives to the this
point, it means that all the characters of the alphabet are in the receiver, else
the execution would have been stopped and false would have been returned.

 When you define a method returning a boolean value, always think that you should

at least return a true and a false value. This sounds like a stupid advice but devel-

oping such a basic reflex is important.

Important The execution of any expression preceded by a ^ (a caret)
will cause the method to exit at that point, returning the value of that
expression. A method that terminates without explicitly returning some
expression will implicitly return self.

7.7 Handling alphabet

A pangram is only valid within a given alphabet. The web site http://clagnut.

com/blog/2380/ describes pangrams in many different languages. Now we
could follow one gag in Gaston Lagaffe with the ’Il y a des poux. Parmi les
poux, il y a des poux papas et des poux pas papas. Parmi les poux papas, il y
a des poux papas papas et des poux papas non papas....’ and all their descen-
dance. ’les poux papas et les poux pas papas’ is not a pangram in french but a
pangram in the alphabet ’apouxetl’.

We would like to be able to specify the alphabet to be used to verify. Yes we
define a new test.

GramCheckerTest >> testIsPangramIn

self assert: ('The quick brown fox jumps over the lazy dog'
isPangramIn: 'abcdefghijklmnopqrstuvwxyz').

self assert: ('les poux papas et les poux pas papas' isPangramIn:
'apouxetl').

You can do it really simply:

63

http://clagnut.com/blog/2380/
http://clagnut.com/blog/2380/

Some collection katas with words

String >> isPangramIn: alphabet
"Returns true is the receiver is a pangram i.e., that it uses all

the characters of a given alphabet."
"'The quick brown fox jumps over the lazy dog' isPangramIn:

'abcdefghijklmnopqrstuvwxyz'
>>> true"
"'tata' isPangramIn: 'at'
>>> true"

... Your solution ...

String >> isEnglishPangram
"Returns true is the receiver is a pangram i.e., that it uses all

the characters of a given alphabet."
"'The quick brown fox jumps over the lazy dog' isEnglishPangram
>>> true"
"'The quick brown fox jumps over the dog' isEnglishPangram
>>> false"

... Your solution ...

Execute all the tests to verify that we did not change anything.

If we keep to use french words that do not need accents, we can verify that
some french sentences are also pangrams.

'portez ce vieux whisky au juge blond qui fume' isEnglishPangram
>>> true

'portons dix bons whiskys à l''avocat goujat qui fume au zoo.'
isEnglishPangram

>>> true

7.8 Identifying missing letters

Building a pangram can be difficult and the question is how we can identify
missing letters. Let us define some methods to help us. But first let us write a
test.

We will start to write a test for the method detectFirstMissingLetter-
For:. As you see we just remove one unique letter from our previous pan-
gram and we are set.

GramCheckerTest >> testDetectFirstMissingLetter

self assert: ('the quick brown fox jumps over the lzy dog'
detectFirstMissingLetterFor: 'abcdefghijklmnopqrstuvwxyz')
equals: $a.

self assert: ('the uick brown fox jumps over the lazy dog'
detectFirstMissingLetterFor: 'abcdefghijklmnopqrstuvwxyz')

64

7.8 Identifying missing letters

equals: $q.

Your work: Propose a definition for the method detectFirstMissingLet-
terFor:.

String >> detectFirstMissingLetterFor: alphabet
"Return the first missing letter to make a pangram of the receiver

in the context of a given alphabet.
Return '' otherwise"

... Your solution ...

In fact this method is close to the method isPangramIn: alphabet. It should
iterate over the alphabet and check that the char is included in the string.
When this is not the case, it should return the character and we can return
an empty string when there is no missing letter.

About the return values of detectFirstMissingLetterFor:

Returning objects that are not polymorphic such as a single character or a
string (which is not a character but a sequence of characters) is really bad
design. Why? Because the user of the method will be forced to check if the
result is a single character or a collection of characters.

 Avoid as much as possible to return objects that are not polymorphic. Return a

collection and an empty collection. Not a collection and nil. Write methods re-

turning the same kind of objects, this way their clients will be able to treat them

without asking if they are different. This practice reinforces the Tell do not ask

principle.

We have two choices: either always return a collection as for that we con-
vert the character into a string sending it the message asString as follow,
or we can return a special character to represent that nothing happens for
example Character space.

String >> detectFirstMissingLetterFor: alphabet
"Return the first missing letter to make a pangram of the receiver

in the context of a given alphabet.
Return '' otherwise"

alphabet do: [:aChar |
(self includes: aChar)

ifFalse: [^ aChar asString]
].

^ ''

Here we prefer to return a string since the method is returning the first
character. In the following one we return a special character.

65

Some collection katas with words

String >> detectFirstMissingLetterFor: alphabet
"Return the first missing letter to make a pangram of the receiver

in the context of a given alphabet.
Return '' otherwise"

alphabet do: [:aChar |
(self includes: aChar)

ifFalse: [^ aChar]
].

^ Character space

Now it is better to return all the missing letters.

Detecting all the missing letters

Let us write a test to cover this new behavior. We removed the character a
and g from the pangram and we verify that the method returns an array with
the corresponding missing letters.

GramCheckerTest >> testDetectAllMissingLetters

self assert: ('the quick brown fox jumps over the lzy do'
detectAllMissingLettersFor: 'abcdefghijklmnopqrstuvwxyz')
equals: #($a $g).

self assert: ('the uick brwn fx jumps ver the lazy dg'
detectAllMissingLettersFor: 'abcdefghijklmnopqrstuvwxyz')
equals: #($q $o).

Your work: Implement the method detectAllMissingLettersFor:.

String >> detectAllMissingLettersFor: alphabet

... Your solution ...

One of the problem that you can encounter is that the order of the missing
letters can make the tests failed. You can create a Set instead of an Array.

Now our test does not work because it verifies that we get an array of charac-
ters while we get an ordered collection. So we change it to take into account
the returned collection.

GramCheckerTest >> testDetectAllMissingLetters

self assert: ('the quick brown fox jumps over the lzy do'
detectAllMissingLettersFor: 'abcdefghijklmnopqrstuvwxyz')
equals: (Set withAll: #($a $g)).

self assert: ('the uick brwn fx jumps ver the lazy dg'
detectAllMissingLettersFor: 'abcdefghijklmnopqrstuvwxyz')
equals: #($q $o) asSet.

Instead of explicitely creating a Set, we could also use the message asSet
that converts the receiver into a Set as shown in the second check.

66

7.9 Palindrome as exercise

7.9 Palindrome as exercise

We let as an exercise the identification if a string is a palindrom. A palin-
drome is a word or sentence that can be read in both way. ’KAYAK’ is a palin-
drome.

GramCheckerTest >> testIsPalindrome

self assert: 'ete' isPalindrome.
self assert: 'kayak' isPalindrome.
self deny: 'etat' isPalindrome.

Some possible implementations

Here is a list of possible implementation.

• You can iterate on strings and check that the first element and the last
element are the same.

• You can also reverse the receiver (message reverse) and compare the
character one by one. You can use the message with:do: which iter-
ate on two collections.

'etat' reverse
>>> 'tate'

| res |
res := OrderedCollection new.
#(1 2 3) with: #(10 20 30) do: [:f :s | res add: f * s].
res
>>> an OrderedCollection(10 40 90)

You can also add the fact that space do not count.

self assert: 'Elu par cette crapule' isPalindrome.

7.10 Conclusion

We got some fun around words and sentences. You should know more about
strings and collection. In particular, in Pharo a collection can contain any
objects. You also saw is that loops to not require to specify the first index
and how to increment it. Of course we can do it in Pharo using the message
to:do: and to:by:do:. But only when we need it. So play with some itera-
tors such as do: and select:. The iterators are really powerful and this is
really important to be fluent with them because they will make you save a lot
of time.

67

Part II

About objects and classes

7.10 Conclusion

In this part of the book we suggest carefully reading the first chapter before
continuing with the rest. The other chapters contain extremely simple exer-
cises which may be tedious to read in one sitting.

71

CHA P T E R 8
Objects and classes

Pharo is a pure object-oriented programming language, i.e., everything in
the system is an object i.e., an entity created by a class and reacting to mes-
sages.

This chapter presents key mechanisms that characterize object-oriented pro-
gramming: objects, classes, messages and methods. We will also present distri-
bution of responsibilities which is one of the heart of object-oriented program-
ming as well as delegation and composition. Each of these mechanisms will be
used and illustrated again in this book.

We start explaining objects, classes, messages and methods with really sim-
ple examples. Then in the following chapter we will propose an example that
illustrates what we can achieve by using objects of different classes.

Objects are created by classes that are object factories: Classes define the
structure and behavior of objects (in terms of methods) but each object has a
specific state and identity that is unique and different from all other objects.
A class defines methods that specify how a message is actually implemented.

8.1 Objects: Entities reacting to messages

Instead of a bit-grinding processor ... plundering data structures, we have a universe
of well-behaved objects that courteously ask each other to carry out their various
desires. [Ingall 81]

Object-oriented programming is about creating objects and interacting with
objects by sending them messages.

Objects are entities that communicate via messages and react to messages
by executing certain tasks. Moreover objects hide the way they define these

73

Objects and classes

tasks: the client of an object send a message to an object and the system find
the corresponding method to be executed. Messages specify what should be
done and methods how it should be done.

Turtles as an example

Imagine that we have a graphics turtle like a LOGO turtle. We do the follow-
ing: create a turtle, send it messages to make it move, turn, and trace some
drawings. Let us look at this in detail.

Creating an object

First we create a new turtle by sending the message new to the class Turtle.

| t |
t := Turtle new.

A class is a cast for objects. All the objects, instances of a class, share the
same characteristics and behavior. For example, all the turtle instances have
a direction and understand messages to rotate and move. However, each tur-
tle has its own value for its direction. We say that all the instances of a class
have the same instance variables but each as private value for them.

Sending messages

The only way to interact with objects is to send them messages. In the follow-
ing snippets we send messages

• to create an object , message new,

• to tell the turtle to turn, message turn:, and

• to tell the turtle to move, message go:.

| t |
t := Turtle new.
t turn: 90.
t go: 100.
t turn: 180.
t go: 100.

When an object receives a message, it reacts by performing some actions. An
object can return a value, change its internal state, or send messages to other
objects. Here the turtle will change its direction and it will interact with the
display to leave a trail.

74

8.2 Messages and Methods

Multiple instances: each with its own state.

We can have multiple objects of the same class and each one has a specific
state. Here we have two turles each one located to a specific position and
pointing into its own direction.

| t1 t2 |
t1 := Turtle new.
t1 turn: 90.
t1 go: 100.
t1 turn: 180.
t1 go: 100.
t2 := Turtle new.
t2 go: 100.
t2 turn: 40.
t2 go: 100.

8.2 Messages and Methods

Messages specify what the object should do and not how it should do it (this
is the duties of methods). When we send the message go: we just specify
what we expect the receiver to do. Sending a message is similar to the ab-
straction provided by procedures or functions in procedural or functional
programming language: it hides implementation details. However sending
a message is much more than executing a sequence of instructions: it means
that we have to find the method that should be executed in reaction to the
message.

Message: what should be executed

The message square: is send to a new turtle with 100 as argument. The mes-
sage expresses what the receiver should do.

Turtle new square: 100

Method: how we execute it

The method definition square: below defines step by step what are the ac-
tions to be done in response to the message square:. It defines that to draw
a square the turtle receiving the message square: (represented by self)
should perform four times the following sequences of messages: move for-
ward a distance (message go:), turn 90 degrees (using the message turn:).

square: size
4 timesRepeat: [self go: size; turn: 90]

Note that finding the method corresponding to the message is done at run-
time and depends on the object receiving the message.

75

Objects and classes

square: 100

east

go:

square:

jump:

turn:

northso
uth

color:

a message

square: size
 4 timesRepeat: [
 self go: size; turn: 90]

Figure 8-1 An object presents to the other objects an interface composed of a

set of messages defining what he can do. This behavior is realized by methods

that specify how the behavior is implemented. When a message is sent to an ob-

ject a method with the message name (called selector) is looked up and executed.

 A message represents what the object should do, while a method specifies how

the behavior is realized.

An object can also send messages to other objects. For example, when a tur-
tle draws a line, it sends messages to an object representing the line color
and its length.

 An object is an entity that once created receives messages and performs some

actions in reaction. When a message is sent to an object, a method with the mes-

sage name is looked up and executed.

8.3 An object is a protective entity

An object is responsible of the way it realizes its reaction to a message. It
offers services but hides the way they are implemented (see Figure 8-2). We
do not have to know how the method associated with the message selector
is implemented. Only the object knows the exact definition of the method.
This is when we define the method square: that defines how a turtle draws
a square of a given size, that we focus on how a turtle draws a square. Figure
8-2 shows the message and the method square:. The method square: de-
fines how to draw step by step a square, however the object only offers the
message square: and does not show it implementation.

Important An object presents to the other objects an interface (i.e., a set
of messages) defining what the object can do. This behavior is realized
by methods that specify how the behavior is implemented. To perform
something useful some data are most of the time required. Data are only
accessed by the methods.

76

8.4 An object protects its data

square: s
 self go: s; turn: 90; go: s;
 self turn: 90; go: s; turn: 90;
 go: s; turn: 90

State east

go:

square:

jump:

turn:

northso
uth

color:

Methods

Messages

square: 100

Figure 8-2 The message square: can be implemented differently. This different

implementation does not impact the sender of the message who is not concerned

by the internals of the object.

From a turtle user point of view, the only relevant information is that the
turtle effectively receiving the message square: executes the method that
draws a square. So changing the definition of the square: method to the one
below does not have any consequence on the methods that call it. Figure 8-2
illustrates this point.

square: s
"Make the receiver draw a square of size s"

self go: s; turn: 90; go: s; turn: 90.
self go: s; turn: 90; go: s; turn: 90

Hiding the internal representation is not limited to object-oriented program-
ming but it is central to object-oriented programming.

Important An object is responsible of the way it realizes its reaction to a
message. It offers services and hides the way they are implemented.

8.4 An object protects its data

An object holds some private data that represents its state (see Figure 8-3).
Moreover, it controls its state and should not let other objects play directly
with them because this could let him into an inconsistent state. For example,
you do not want to somebody else plays with the data of your bank account
directly and really want to control your transaction.

For example, a LOGO turtle can be represented by a position, a direction
and a way to indicate if its pen is up or down. But, we cannot directly access
these data and change them. For that we have to use the set of messages pro-
posed by a turtle. These methods constitute the interface of an object. We say
that the object state is encapsulated, this means that not everybody can access

77

Objects and classes

Data east

go:

square:

jump:

turn:

northsou
th

color:

square: size
 4 timesRepeat: [
 self go: size; turn: 90]

Methods

Object interface:
set of messages understood by the object

Private state of the object

Figure 8-3 A turtle is an object which has an interface, i.e., a set of messages to

which it can reply and a private state that only its methods can access.

20@40
90

down
east

go:

square:

jump:

turn:

northso
uth

color:

MethodsPrivate state of the object

100@20
45
up

east

go:

square:

jump:

turn:
northso

uth
color:

Methods

Figure 8-4 Two turtles have the same interface, i.e., set of messages being un-

derstood but they have different private state representing their direction, posi-

tion and pen status.

it. In fact, object-oriented programming is based on encapsulation, i.e., the
fact that per default objects are the only ones that can access their own state.

In Pharo, a client cannot access the state of an object if the object does not
define a method to access it. Moreover, clients should not rely on the inter-
nal representation of an object because an object is free to change the way
it implements its behavior. Exposing the internal state of an object by defin-
ing methods providing access to the object data weakens the control that an
object has over its own state.

Important An object holds some private data that represents its internal
state. Each object has its own state. Two objects of the same class share
the same interface but have their own private state.

8.5 With counters

Now that you got the main point of objects, we can see that it applies to ev-
erything. In Pharo everything is an object. In fact there is nothing else, only
objects. Here is a little program with counters.

78

8.6 A class: blueprint or factory of objects

We create two counters that we store in variables c1 and c2 instances of the
class Counter. Each counter has its own state but exhibits the same behavior
as all the counters defined by the class Counter:

• when responding to the message count, it returns its value,

• when responding to the message increment, it increment one to its
current value.

| c1 c2 |
c1 := Counter new.
c2 := Counter new.
c1 count.
>>> 0
c1 increment.
c1 increment.
c1 count.
>>> 2
c2 count.
>>> 0
c 2 increment.
c2 count.
>>> 1

8.6 A class: blueprint or factory of objects

A class is a mold or cast of objects. A class specifies two important aspects of
their instances:

• Instance structure. All the instances of a class will have the same
structure expressed in terms of instance variables. Pay attention that
the variables are the same for all the instances of a class but not their
values. Each instance has specific values for its instance variables.

• Instance behavior. All the instances share the same behavior even if
this one can be different because applied on different values.

Important A class is as a blueprint for its instances. It is a factory of
objects. All objects will have the same structure and share a common be-
havior.

Let us illustrate this with the class Counter.

Object structure

Let us study the Counter class definition.

79

Objects and classes

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
package: 'LOOP'

The expresion Object subclass: #Counter indicates that the class Counter
is a subclass of the class Object. It means that counter instances understand
the messages defined also by the class Object. In Pharo, classes should at
least be a subclass of the class Object. You will learn more about subclassing
and inheritance in Chapter 14.

Then the class Counter defines that all the instances will have one instance
variable named count using the expression instanceVariableNames: 'count'.
And each instance of the class Counter will have a count variable with a dif-
ferent value as we showed in the examples above.

Finally the class is defined in the package 'LOOP'. A package is a kind of
folder containing multiple classes.

Object behavior

In addition a class is the place that groups the behavior of its instances. In-
deed since all the instances of the class share the same behavior definitions,
such behavior is defined and grouped in a class.

For counters, the class defines how to retrieve the counter value, how to in-
crement and decrement the count as used in the messages in the previous
code snippets.

Here is the definition of themethod increment. It simply adds one to the
instance variable count.

Counter >> increment
count := count + 1

When we send a message to a counter for example in the expression c1 in-
crement, the method increment will be applied on that specific object c1. In
the expression c1 increment, c1 is called the receiver of the message in-
crement.

In the method increment, the variable count refers to the variable of the
receiver of the message.

 A class defines methods that specify the behavior of all the instances created by

the class.

Multiple methods can accessed to the instance variables of the receiver. For
example the methods increment, count: decrement and printOn: all ac-
cess the instance variable count of the receiver to perform different compu-
tation.

80

8.7 Class and instances are really different

Counter >> count: anInteger
count := anInteger

Counter >> decrement
count := count - 1

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', self count printString.

For example, once the following program is executed the count instance
variable of the counter c2 will hold the value 11, since the method count:
will set its value to 10, and increment will set it to 11 and 12 and finally
decrement will set it to 11.

| c2 |
c2 := Counter new.
c2 count: 10.
c2 increment.
c2 increment.
c2 decrement.

Self is the message receiver

Imagine that now we would like to send a message to the object that receives
the message itself. We need a way to refer to this object. Pharo defines a spe-
cial variable for this exact purpose: self.

Important self always refers to the message receiver that is currently
executed.

For example we can implement the method incrementByTwo as follows:

Counter >> incrementByTwo
self increment.
self increment

When we execute the expression c1 incrementByTwo, during the execution
of the method incrementByTwo, self refers to c1.

We will explain how a method is found when a message is sent but first we
should explain inheritance, i.e., how a class is defined incrementally from a
root class and all this will be explained in Chapter 14.

8.7 Class and instances are really different

Classes and objects are different objects; they understand different messages.

For example, sending new to the Counter class returns a newly created counter,
while sending new to a counter results in an error. In the opposite way, send-

81

Objects and classes

ing increment to the class Counter leads also to an error because the class
Counter is a factory of objects not the objects themselves.

A class is a factory of objects. A class creates instances. An instance does not
create other instances of the class.

 A class describes the structure (instance variables) and the behavior (methods) of

all its instances. The state of an instance is the value of its instance variables and

it is specific to one single object while the behavior is shared by all the instances

of a class.

8.8 Conclusion

In this chapter you saw that:

• An object is a computer entity that once created receives messages and
performs some actions in reaction.

• An object has an unique identity.

• An object holds some private data that represent its internal state.

• A class is a factory of objects: It describes the internal structure of all its
instances by means of instance variable.

• All objects of the same class share the same behavior, i.e., the same
method definitions.

• Instance variables are accessible by all the methods of a class. Instance
variables have the same lifetime than the object to which they belong
to.

• In Pharo , instance variables cannot be accessed from outside of an
object. Instance variables are only accessible from the methods of the
class that define them.

• Methods define the behavior of all the instances of the class they be-
long to.

82

CHA P T E R 9
Revisiting objects and classes

In the previous chapter we presented objects and classes via simple exam-
ples. In this chapter we introduce a little bit more elaborated example: a
little file system where we revisit everything and extend it to explain late
binding, distribution of responsibilities and delegation. The file example will be
extended to present inheritance in Chapter 14.

9.1 A simple and naive file system

We start to present a simple example that we use to present and explain the
concepts: a simple and naive file system as shown in Figure 9-1. What the
diagram shows is that we have:

• files that also have a name and a contents. Here we get three different
files Babar, Astroboy and tintinEtLesPicaros.

• directories that have a name and can contain other files or directories.
Here we get the manga, comics, oldcomics and belgiumSchool direc-
tories. Directories can be nested: comics contains three repositories.
The belgiumSchool directory contains tintinEtLesPicaros.

Figure 9-1 Some directories and files organised in a file system.

83

Revisiting objects and classes

Figure 9-2 Inspecting dOldComics and clicking on the parent variable.

9.2 Studying a first scenario

Since what we want to develop may be a bit unclear for us, let us define first
an example. In the rest of this book we will code such examples as tests that
can automatically be executed. For now it would make the discourse too
complex, so we just use little code examples.

We create two directories.

| dComics dOldComics dManga |
dComics := MFDirectory new name: 'comics'.
dOldComics := MFDirectory new name: 'oldcomics'.

We add the oldcomics folder to comics and we check that the parent children
relationship is well set.

...
dComics addElement: dOldComics.
dOldComics parent == dComics
>>> true

Here we verify that the parent of dOldComics is dComics: the message ==
checks that the receiver is the same object than the argument.

You can also inspect the receiver as follows and if you click on the instance
variable parent of the receiver you should obtain the situation depicted by
Figure 9-2.

...
dOldComics inspect

We continue with some queries.

84

9.3 Defining a class

printOn: aStream
addElement: aFile

name
parent
files

Directory

oldcomicscomics

Figure 9-3 The Directory class and some instances (directories).

...
dComics parent
>>> nil

Here we verify that dOldComics is comprised in the children of dComics.

...
dComics children includes: dOldComics.
>>> true

We create a new repository and we check that once added to a parent reposi-
tory, it is included in the children.

dManga := MFDirectory new name: 'manga'.
dComics addElement: dManga.
dComics children includes: dManga
>>> true

9.3 Defining a class

Let us start by defining the directory class.

Object subclass: #MFDirectory
instanceVariableNames: 'parent name files'
classVariableNames: ''
package: 'MyFS'

When we create a directory, its files is an empty ordered collection. This is
what we express in the following method initialize.

MFDirectory >> initialize
files := OrderedCollection new

A newly created object is sent the message initialize just after its creation.
Therefore the initializemethod is executed.

Now we can write the method addElement:. (To keep things simple, note
that we consider that when a file is added to a directory, it was not belong-
ing to a another directory. This behavior could be implemented by aFile

85

Revisiting objects and classes

moveTo: aDirectory) Adding a file to a directory means: (1) that the par-
ent of the file is changed to be the directory to which it is added, (2) that the
added file is added to the list of files contained in the directory.

MFDirectory >> addElement: aFile
aFile parent: self.
files add: aFile

Note that the method name addElement: is not nice but we chose it on pur-
pose so that you do not believe that delegating requires that the methods
have the same name. An object can delegate its part of duties to another ob-
ject by simply passing a message.

We should then define the methods name:, parent:, parent, and children
to be able to run our example.

MFDirectory >> name: aString
name := aString

MFDirectory >> parent: aFile
parent := aFile

MFDirectory >> parent
^ parent

MFDirectory >> children
^ files

With such method definitions, our little example should run. It should not
print the same results because we did not change the printing of the objects
yet.

A first little analysis

When we look at the implementation of the method to add a file to a direc-
tory we see that the class MFDirectory used another class OrderedCollec-
tion to store the information about the files it contains. An ordered collec-
tion is a quite complex object: it can insert, remove elements, grow its size,
and many more operations.

We say that the class MFDirectory delegates a part of its duties (to keep the
information of the files it contains) to the class OrderedCollection. In addi-
tion, when an object is executed, the object to which it may delegate part of
its computation may change dynamically.

Such behavior is not specific to object-oriented programming, in procedu-
ral languages we can call another function defined on a data structure. Now
with object-oriented programming, there is a really important point: an ob-
ject will send messages to other objects (even from the same class) and such
message send will use the message offered by the receiver. There is normally
no way for an object to access the internal structure of another object.

86

9.4 Printing a directory

9.4 Printing a directory

Now we would like to get the directory printed in a better way. Without too
much explanation, you should know that the method printOn: astream of
an object is executed when the system or we send the message printString
to an object. So we can specialise it.

The argument passed to the method printOn: is a stream. A stream is an
object in which we can store information one after the other in sequence
using the message <<. The argument of << should be a sequence of objects
such as string (which is a sequence of characters).

MFDirectory >> printOn: aStream
aStream << name

Let us try.

| el1 el2 |
el1 := MFDirectory new name: 'comics'.
el2 := MFDirectory new name: 'oldcomics'.
el1 addElement: el2.
el1 printString
>>> 'comics'

...
el2 printString
>>> 'oldcomics'

What would be nice is to get the full path so that we can immediately un-
derstand the configuration. For example we would like to finish with a ’/’ to
indicate that this is a directory as with the ls command on unix.

| el1 el2 |
el1 := MFDirectory new name: 'comics'.
el2 := MFDirectory new name: 'oldcomics'.
el1 addElement: el2.
el1 >> printString.
>>>'comics'

...
el2 printString
>>> 'comics/oldcomics/'

A possible definition is the following one:

MFDirectory >> printOn: aStream
parent isNil
ifFalse: [parent printOn: aStream].

aStream << name.
aStream << '/'

Try it and it should print the expected results. What do we see with this def-
inition: it is a kind of recursive definition. The name of a directory is in fact

87

Revisiting objects and classes

oldcomics

comics

parent printString

printOn:

printOn:

Figure 9-4 Navigating an object graph by sending message to different objects.

oldcomics

comics

babar

parent

parent

belgiumSchool

tintinparent

parent

Figure 9-5 A graph of objects to represent our file system.

the concatenation (here we just add in the stream but this is the same.) of
the name of its parents (as shown in Figure 9-4). Similar to a recursive func-
tion navigating a structure composed of similar elements (like a linked-list
or any structure defined by induction), each parent receives and executes
another time the printOn: method and returns the name for its part.

9.5 Adding files

Now we want to add files. Once we will have defined files we will be able to
have a graph of objects of different kinds represent our file system with di-
rectories and files as shown in Figure 9-5.

An example first

Again let us start with an example. A file should contain some contents.

| el1 dOldComics |
el1 := MFFile new name: 'astroboy'; contents: 'The story of a boy

turned into a robot that saved the world'.
dOldComics := MFDirectory new name: 'oldcomics'.
dOldComics addElement: el1.
el1 printString.
>>>
'oldcomics/astroboy'

88

9.5 Adding files

printOn: aStream

name
parent
contents

File

astroboybabar

Figure 9-6 A new class and its instances.

A new class definition

Again a file needs a name, a parent and in addition a contents.

We define the class MFFile as follows and illustrated in Figure 9-6. Note that
this solution is not satisfactory and we will propose a much better one later.

Object subclass: #MFFile
instanceVariableNames: 'parent name contents'
classVariableNames: ''
package: 'MyFS'

As for the directories we initialize the contents of a file with a default value.

MFFile >> initialize
contents := ''

We should define the same methods for parent:, parent and name:. This
duplication coupled with the fact that we get nearly the same class definition
should be a clear warning. It means that we do not reuse enough and that if
we want to change the system we will have to change it multiple times and
we may introduce errors by forgetting one place. We will address it in Chap-
ter 14. In addition we will add a method to be able to set the contents of the
file contents:.

MFFile >> name: aString
name := aString

MFFile >> parent: aFile
parent := aFile

MFFile >> parent
^ parent

MFFile >> contents: aString
contents := aString

At the stage we should be able to define a file and adding it to a directory.

89

Revisiting objects and classes

oldcomics

comics

babar

parent

parent

belgiumSchool

tintinparent

parent

printOn:

printOn:

printOn:

Figure 9-7 Printing a file: Sending messages inside a graph of different objects.

Now we should redefine the implementation of printOn: to print nicely the
name of file:

MFFile >> printOn: aStream
aStream << name

But this is not enough because we will just get 'astroboy' and not 'old-
comics/astroboy'. So let us improve it.

MFFile >> printOn: aStream
parent isNil ifFalse: [
parent printOn: aStream].

aStream << name

9.6 One message and multiple methods

Before continuing let us step back and analyse the situation. We send the
same messages and we execute different methods.

| el1 dOldComics dComics |
el1 := MFFile new name: 'astroboy'; contents: 'The story of a boy

turned into a robot that saved the world'.
dOldComics := MFDirectory new name: 'oldcomics'.
dComics := MFDirectory new name: 'comics'.
dComics addElement: dOldComics.
dOldComics addElement: el1.
el1 printString.
>>>
'comics/oldcomics/astroboy'

dOldComics printString.
>>>
'comics/oldcomics/'

What we see is that there is one message and several implementations of
methods and that sending a message will find and execute the correct method.

90

9.7 Objects: stepping back

printOn: aStream
size
search: aString

name
parent
contents

File

astroboybabar

printOn: aStream
addElement: aFile
size
search: aString

name
parent
files

Directory

oldcomicscomics

Figure 9-8 Two classes understanding similar sets of message.

For example, there are two methods printOn: one for file and one for direc-
tory but only one message printOn: sent from the printStringmessage.

In addition a method can be defined in terms of messages sent to other ob-
jects. The method printOn: for directories is complex and it delegates the
same message to other objects, its parents (as illustrated by Figure 9-7). The
method addElement: delegates to the OrderedCollection sending a different
message add:.

9.7 Objects: stepping back

Now that we saw some examples of objects, it is time to step back. Objects
are defined by the values of their state, their behavior (shared with the other
instances of their class) and an identity.

• State. Each object has specific values. While all the instances of classes
have the same structure, each instance has its own values. Each ob-
ject has a private state. Clients or users of an object cannot access the
state of the object if this one does not explicitly expose it by defining a
method returning it (such as the message count).

• Behavior. Each object shares the same behavior with all the instances
of its class.

• Identity. An object has an identity. It is unique. oldcomics is clearly
not the same as comics.

9.8 Examples of distribution of responsibilities

We will now implement two functionalities: the size of directories and a
search based on the contents of the files. This will set the context to explain
the key concept of distribution of responsibilities.

91

Revisiting objects and classes

File size

Let us imagine that we want to compute the size of a directory. Note that
the size computation we propose is fantasist but this is for the sake of the
example. To perform such a computation we should also define what is the
size of a file. Again let us start with examples (that you will turn into tests in
the future.).

First we define the file size as the size of its name plus the size of its con-
tents.

| el |
el := MFFile new name: 'babar'; contents: 'Babar et Celeste'.
el size = 'babar' size + 'Babar et Celeste' size.
>>> true

Second we define the directory size as its name size plus the size of its files
and we add and arbitrary number: 2.

| p2 el |
el := MFFile new name: 'babar'.
p2 := MFDirectory new name: 'oldcomics'.
p2 addElement: el.
p2 size = 'oldcomics' size + 'babar' size + 2
>>> true

We define two methods size one for each class (see Figure 9-8).

MFFile >> size
^ contents size + name size

MFDirectory >> size
| sum |
sum := 0.
files do: [:each | sum := sum + each size].
sum := sum + name size.
sum := sum + 2.
^ sum

Search

Let us imagine that we want to search the files matching a given string. Here
is an example to set the stage.

| p el1 el2 |
p := MFDirectory new name: 'comics'.
el1 := MFFile new name: 'babar'; contents: 'Babar et Celeste'.
p addElement: el1.
el2 := MFFile new name: 'astroboy'; contents: 'super cool robot'.
p addElement: el2.
(p search: 'Ba') includes: el1
>>> true

92

9.9 Important points

To implement this behavior is quite simple: we define two methods one in
each class (as shown in Figure 9-8).

MFFile >> search: aString
^ '*', aString, '*' match: contents

MFDirectory >> search: aString
^ files select: [:eachFile | eachFile search: aString]

9.9 Important points

These two examples show several important points:

Modular thinking

Each method is modular in the sense that it only focuses on the behavior of
the objects specified by the class defining the method. Such method can be
built by sending other messages without having to know how such methods
are defined. It also means that we can add a new kind of classes or remove
one without having to change the entire system.

Sending a message is making a choice

We send one message and one method amongst the multiple methods with
the same name will be selected and executed. The method is dynamically
looked up during execution as we will see in Chapters 14 and 13. Sending a
message is selecting the corresponding method having the same name than
the message. When a message is sent to an object the corresponding method
is looked in the class of the message receiver.

Important Sending a message is making a choice. The system selects for
us the correct method to be executed.

Polymorphic objects

We created objects (files and directories) that are polymorphic in the sense
that they offer a common set of messages (search:, printOn:, size, par-
ent:). This is really powerful because we can compose objects (for example
add a new directory or a file) without changing the program. Imagine that
we add a new kind of directories we can introduce it and reuse extending
programs based on size or search: without changing them.

Important Creating polymorphic objects is a really powerful capability.
It lets us extend and change programs without breaking them.

93

Revisiting objects and classes

Most of the time it is better to give similar name to methods performing sim-
ilar behavior, and different names when the methods are doing semantically
different actions, so that users of the objects are not confused.

The polymorphism is really a strength of object-oriented languages because
it allows one to treat different objects, i.e., instances of different classes, uni-
formly as soon as they implement the same messages. Polymorphism works
in synergy with the idea that an object is responsible to decide how to re-
act to message reception. Indeed, the fact that different objects can imple-
ment the same messages let us write code that only tell the objects to exe-
cute some actions without worrying exactly about the kind of objects.

9.10 Distribution of responsibilities

This example as well as the printing of files and directories illustrates some-
thing fundamental in object-oriented programming: the distribution of re-
sponsibilities. With the distribution of responsibilities, each kind of objects is
responsible for a specific behavior and a more elaborated behavior is com-
posed out of such different behavior. The size of a directory is computed
based on the size of its files by requesting the files to compute their size.

Procedural

Let us take some time to compare with procedural thinking. Computing the
size of a list of files and directories would have been expressed as a monolitic
behavior sketch below:

sizeOfFiles: files
| sum |
sum := 0.
files do: [:aFile |
aFile class = MFFile

ifTrue: [sum := sum + aFile name size + aFile contents size].
aFile class = MFDirectory

ifTrue: [
| fileSum |
fileSum := 0.
each files do: [:anInsideFile | fileSum := fileSum +

anInsideFile name size + anInsideFile contents size].
sum := sum + fileSum + each name size + 2].

^ sum

While this example is a bit exagerated, we see several points:

• First, we explicitly check the kind of structures we are manipulating. If
this is a file or directory we do something different.

94

9.11 So far so good? Not fully!

• Second, the logic of the computation is defined inside the sizeOf-
Files: itself, and not in the entities themselves. This means in par-
ticular that such logic cannot be reused.

• A part of the implementation logic is exposed and not in control of the
object. It means that if we decide to change the internal structure of
our classes, we will have to change this function too.

• Adding a new kind of such as a root directory is not modular. We will
have to modify the method sizeOfFiles: function.

What you should also see when you compare the two versions is that in the
procedural version we have to check the kind of object we manipulate. In the
object-oriented version, we simply tell the object to perform its own compu-
tation and return the result to us.

Important Don’t ask, tell. Object-oriented programming essence is
about sending order not checking state.

9.11 So far so good? Not fully!

We have a system with two classes and it offers some behavior composed out
of well defined local behavior (see Figure 9-8). We can have objects composed
out of other objects and messages flow within the graph. Object-oriented
programming could stop here. Now it is annoying to have to duplicate struc-
ture and some methods between files and directories and this is what we will
see when we will look at inheritance in Chapter 14. Inheritance is a mecha-
nism to specialize incrementally classes from other classes.

9.12 Conclusion

• A class describes the state (instance variables) and the behavior (meth-
ods) of all its instances. The state of an instance is the value of its in-
stance variables and it is specific to one single object while the behav-
ior is shared by all the instances of a class.

• Different objects, instances of different classes, can react differently to
the same messages.

• When sending a message, the associated method is found and executed.

95

CHA P T E R 10
Converter

In this chapter you will implement a little temperature converter between
celsius and fahrenheit degrees. It is so simple that it will help us to get started
with Pharo and also with test driven development. Near the end of the chap-
ter we will add logging facilities to the converter so that we can log the tem-
peratures of certain locations. For this you will create a simple class and its
tests.

We will show how to write test to specify the expected results. Writing tests
is really important. It is one important tenet of Agile Programming and Test
Driven Development (TDD). We will explain later why this is really good to
have tests. For now we just implement them. We will also discuss a bit a fun-
damental aspects of float comparison and we will also present some loops.

10.1 First a test

First we define a test class named TemperatureConverterTest within the
package MyConverter. It inherits from the class TestCase. This class is spe-
cial, any method starting with 'test' will be executed automatically, one by
one each time on a new instance of the class (to make sure that tests do not
interfere with each others).

TestCase subclass: #TemperatureConverterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MyConverter'

Converting from Fahrenheit to Celsius is done with a simple linear transfor-
mation. The formula to get Fahrenheit from Celsius is F = C * 1.8 + 32. Let us

97

Converter

write a test covering such transformation. 30 Celsius should be 86 Fahren-
heit.

testCelsiusToFahrenheit

| converter |
converter := TemperatureConverter new.
self assert: ((converter convertCelsius: 30) = 86.0)

The test is structured the following way:

• Its selector starts with test, here the method is named testCel-
siusToFahrenheit.

• It creates a new instance of TemperatureConverter (it is called the
context of the test or more technically its fixture).

• Then we check using the message assert: that the expected behavior
is really happening.

The message assert: expects a boolean. Here the expression ((converter
convertCelsius: 30) = 86.0) returns a boolean. true if the converter
returns the value 86.0, false otherwise.

The testing framework also offers some other similar methods. One is par-
ticularly interesting: assert:equals: makes the error reporting more user
friendly. The previous method is strictly equivalent to the following one us-
ing assert:equals:.

testCelsiusToFahrenheit

| converter |
converter := TemperatureConverter new.
self assert: (converter convertCelsius: 30) equals: 86.0

The message assert:equals: expects an expression and a result. Here
(converter convertCelsius: 30) and 86.0. You can use the message
you prefer and we suggest to use assert:equals: since it will help you to
understand your mistake by saying: 'You expect 86.0 and I got 30'
instead of simply telling you that the result is false.

10.2 Define a test method (and more)

While defining the method testCelsiusToFahrenheit using the class browser,
the system will tell you that the class TemperatureConverter does not exist
(This is true because we did not define it so far). The system will propose to
create it. Just let the system do it.

Once you are done. You should have two classes: TemperatureConvert-
erTest and TemperatureConverter. As well as one method: testCel-
siusToFahrenheit. The test does not pass since we did not implement the

98

10.3 The class TemperaturConverter

conversion method (as shown by the red color in the body of testCelsiusTo-
Fahrenheit).

Note that you entered the method above and the system compiled it. Now in
this book we want to make sure that you know about which method we are
talking about hence we will prefix the method definitions with their class.
For example the method testCelsiusToFahrenheit in the class Temper-
aturConverterTest is defined as follows:

TemperaturConverterTest >> testCelsiusToFahrenheit

| converter |
converter := TemperatureConverter new.
self assert: (converter convertCelsius: 30) equals: 86.0

10.3 The class TemperaturConverter

The class TemperaturConverter is defined as shown below. You could have
define it before defining the class TemperaturConverterTest using the class
definition below:

Object subclass: #TemperatureConverter
instanceVariableNames: ''
classVariableNames: ''
package: 'MyConverter'

This definition in essence, says that:

• We want to define a new class named TemperaturConverter.

• It has no instance or class variables (''means empty string).

• It is packaged in package MyConverter.

Usually when doing Test Driven Development with Pharo, we focus on tests
and lets the system propose us some definitions. Then we can define the
method as follows.

TemperatureConverter >> convertCelsius: anInteger
"Convert anInteger from celsius to fahrenheit"

^ ((anInteger * 1.8) + 32)

The system may tell you that the method is an utility method since it does
not use object state. It is a bit true because the converter is a really simple
object. For now do not care.

Your test should pass. Click on the icon close to the test method to execute
it.

99

Converter

10.4 Converting from Farhenheit to Celsius

Now you got the idea. Let us define a test for the conversion from Fahrenheit
to Celsius.

TemperatureConverterTest >> testFahrenheitToCelsius

| converter |
converter := TemperatureConverter new.
self assert: (converter convertFarhenheit: 86) equals: 30.0.
self assert: (converter convertFarhenheit: 50) equals: 10

Define the method convertFarhenheit: anInteger

TemperatureConverter >> convertFarhenheit: anInteger
"Convert anInteger from fahrenheit to celsius"

... Your solution ...

Run the tests they should all pass.

10.5 About floats

The conversions method we wrote returns floats. Floats are special objects
in computer science because it is complex to represent infinite informa-
tion (such as all the numbers between two consecutive integers) with a finite
space (numbers are often represented with a fixed number of bits). In partic-
ular we should pay attention when comparing two floats. Here is a surprising
case: we add two floats and the sum is not equal to their sums.

(0.1 + 0.2) = 0.3
> false

This is because the sum is not just equal to 0.3. The sum is in fact the num-
ber 0.30000000000000004
(0.1 + 0.2)
> 0.30000000000000004

To solve this problem in Pharo (it is the same in most programming lan-
guages), we do not use equality to compare floats but alternate messages
such as closeTo: or closeTo:precision: as shown below:

(0.1 + 0.2) closeTo: 0.3
> true
(0.1 + 0.2) closeTo: 0.3 precision: 0.001
> true

To know more, you can have a look at the Fun with Float chapter in Deep
Into Pharo (http://books.pharo.org)). The key point is that in computer sci-
ence you should always avoid to compare the floats naively.

100

http://books.pharo.org

10.6 Printing rounded results

So let us go back to our conversion:

((52 - 32) / 1.8)
> 11.11111111111111

In the following expression we check that the result is close to 11.1 with a
precision of 0.1. It means that we accept as result 11 or 11.1

((52 - 32) / 1.8) closeTo: 11.1 precision: 0.1
> true

We can use closeTo:precision: in our tests to make sure that we deal cor-
rectly with the float behavior we just described.

((52 - 32) / 1.8) closeTo: 11.1 precision: 0.1
> true

We change our tests to reflect this

TemperatureConverterTest >> testFahrenheitToCelsius

| converter |
converter := TemperatureConverter new.
self assert: ((converter convertFarhenheit: 86) closeTo: 30.0

precision: 0.1).
self assert: ((converter convertFarhenheit: 50) closeTo: 10

precision: 0.1)

10.6 Printing rounded results

The following expression shows that we may get converted temperature with
a too verbose precision.

(TemperatureConverter new convertFarhenheit: 52)
>11.11111111111111

Here just getting 11.1 is enough. There is no need to get the full version. In
fact, we can manipulate floats in full precision but there are case like User
Interfaces where we would like to get a shorter sort of information. Typi-
cally as user of the temperature converter, our body does not see the dif-
ference between 12.1 or 12.2 degrees. Pharo libraries include the message
printShowingDecimalPlaces: aNumberOfDigit used to round the textual
representation of a float.

(TemperatureConverter new convertFarhenheit: 52)
printShowingDecimalPlaces: 1

>11.1

101

Converter

10.7 Building a map of degrees

Often when you are travelling you would like to have kind of a map of differ-
ent degrees as follows: Here we want to get the converted values between 50
to 70 fahrenheit degrees.

(TemperatureConverter new convertFarhenheitFrom: 50 to: 70 by: 2).
> { 50->10.0.
52->11.1.
54->12.2.
56->13.3.
58->14.4.
60->15.6.
62->16.7.
64->17.8.
66->18.9.
68->20.0.
70->21.1}

What we see is that the method convertFarhenheitFrom:to:by: returns
an array of pairs.

A pair is created using the message -> and we can access the pair elements
using the message key and value as shown below.

| p1 |
p1 := 50 -> 10.0.
p1 key
>>> 50
p1 value
>>> 10.0

Let us write a test first. We want to generate map containing as key the fahren-
heit and as value the converted celsius. Therefore we will get a collection
with the map named results and a collection of the expected values that
the value of the elements should have.

On the two last lines of the test method, using the message with:do: we it-
erate on both collections in parallel taking on element of each collection and
compare them.

TemperatureConverterTest >> testFToCScale

| converter results expectedCelsius |
converter := TemperatureConverter new.
results := (converter convertFarhenheitFrom: 50 to: 70 by: 2).
expectedCelsius := #(10.0 11.1 12.2 13.3 14.4 15.5 16.6 17.7 18.8

20.0 21.1).

results with: expectedCelsius
do: [:res :cel | res value closeTo: cel]

102

10.8 Spelling Fahrenheit correctly!

Now we are ready to implement the method convertFarhenheitFrom: low
to: high by: step. Using the message to:by:, we create an interval to
generate the collection of numbers starting at low and ending up at high us-
ing the increment step. Then we use the message collect: which applies
a block to a collection and returns a collection containing all the values re-
turned by the block application. Here we just create a pair whose key is the
fahrenheit and whose value is its converted celsius value.

TemperatureConverter >> convertFarhenheitFrom: low to: high by: step
"Returns a collection of pairs (f, c) for all the fahrenheit

temperatures from a low to an high temperature"

^ (low to: high by: step)
collect: [:f | f -> (self convertFarhenheit: f)]

10.8 Spelling Fahrenheit correctly!

You may not noticed but we badly spelled fahrenheit since the beginning
of this chapter! Fahrenheit is not spelt farhenheit but Fahrenheit. Now you
may start to think that I’m crazy, because you should rename all the methods
you wrote and in addition all the users of such methods and after we should
check that we did not break anything. And you can think that this is a huge
task.

Well first you should rename the methods because nobody wants to keep
badly named code. Second, I’m not crazy at all. Programmers rename their
code regularly because they often do not get it right the first time, or even
the second time... Often you rewrite your code after thinking more about
the interface you finally understand that you should propose. In fact good
designer think a lot about names because names convey the intent of a com-
putation. Now we have two super powerful tools to help us: Refactorings and
Tests.

We will use the Rename method refactoring proposed by Pharo. A refac-
toring is a code transformation that preserves code properties. The Rename
method refactoring garantees that not only the method but all the places
where it is called will also be renamed to send the new message. In addition
a refactoring garantees that the behavior of the program is not modified. So
this is really powerful.

Select the method convertFarhenheit: in the method list and bring the
menu, use the Rename method (all) item, give a new name convertFahren-
heit:. The system will prompt you to show you all the corresponding op-
erations. Check them to see what you should have done manually. Imagine
the amount of mistakes you could have made and proceed. Do the same for
convertFahrenheitFrom:to:by:.

103

Converter

Now the key question is if these changes broke anything. Normally every-
thing should work since this is what we expect when using refactorings. But
runnning the tests has the final word. So run the tests to check if everything
is ok and here is a clear use of tests: they ensure that we can spot fast a re-
gression.

With this little scenario you should have learned two important things:

• Tests are written once and executed million times to check for regres-
sion.

• Refactorings are really powerful operations that save us from tedious
manual rewriting.

10.9 Adding logging behavior

Imagine now that you want to monitor the different temperatures between
the locations where you live and where you work. (This is a real scenario
since the building where my office is located got its heating broken over win-
ter and I wanted to measure and keep a trace of the different temperatures
in both locations.)

Here is a test representing a typical case. First, since I want to distinguish
my measurements based on the locations, I added the possibility to specify a
location. Then I want to be able to record temperatures either in celsius or in
fahrenheit. Since the temperature often depends on the moment during the
day I want to log the date and time with each measure.

Then we can request a converter for all the dates (message dates) and tem-
peratures (message temperatures) that it contains.

TemperatureConverterTest >> testLocationAndDate

| office |
office := TemperatureConverter new location: 'Office'.
"perform two measures that are logged"
office measureCelsius: 19.
office measureCelsius: 21.

"We got effectively two measures"
self assert: office measureCount = 2.

"All the measures were done today"
self assert: office dates equals: {Date today . Date today}

asOrderedCollection.

"We logged the correct temperature"
self assert: office temperatures equals: { 19 . 21 }

asOrderedCollection

104

10.9 Adding logging behavior

The first thing that we do is to add two instance variables to our class: lo-
cation that will hold the name of the location we measure and measures a
collection that will hold all the temperatures and dates.

Object subclass: #TemperatureConverter
instanceVariableNames: 'location measures'
classVariableNames: ''
package: 'MyConverter'

We initialize such variable with the following values.

TemperatureConverter >> initialize
location := 'Nice'.
measures := OrderedCollection new

It means that each instance will be able to have its own location and its own
collection of measures. Now we are ready to record a temperature in celsius.
What we do is that we add pair with the time and the value to our collection
of measures.

TemperatureConverter >> measureCelsius: aTemp
measures add: DateAndTime now -> aTemp

To support tests we also define a method returning the number of current
measure our instance holds.

TemperatureConverter >> measureCount
... Your code ...

We now define three methods returning the sequence of temperatures, the
dates and the times. Since the time has a microsecond precision it is a bit
difficult to test. So we only test the dates.

TemperatureConverter >> temperatures
^ measures collect: [:each | each value]

To produce time without micro second we suggest to print the time using
print24.

DateAndTime now asTime print24
>>> '22:46:33'

TemperatureConverter >> times
^ measures collect: [:each | each key asTime]

TemperatureConverter >> dates
... Your code ...

Now we can get two converters each with its own location and measurement
records. The following tests verify that this is the case.

105

Converter

TemperatureConverterTest >> testTwoLocations

| office home |
office := TemperatureConverter new location: 'office'.
office measureFahrenheit: 19.
office measureFahrenheit: 21.
self assert: office location equals: 'office'.
self assert: office measureCount equals: 2.
home := TemperatureConverter new location: 'home'.
home measureFahrenheit: 22.
home measureFahrenheit: 22.
home measureFahrenheit: 22.
self assert: home location equals: 'home'.
self assert: home measureCount equals: 3.

We can add now a new method to convert fahrenheit to celcius and we define
a new test first.

TemperatureConverterTest >> testLocationAndDateWithConversion

| converter |
converter := TemperatureConverter new location: 'Lille'.
converter measureFahrenheit: 86.
converter measureFahrenheit: 50.
self assert: converter measureCount equals: 2.
self assert: converter dates
equals: {Date today . Date today} asOrderedCollection.

self assert: converter temperatures
equals: { converter convertFahrenheit: 86 .

converter convertFahrenheit: 50 } asOrderedCollection

What we do is that since celsius is the scientific unity for temperature we
convert to celsius before recording our temperature.

TemperatureConverter >> measureFahrenheit: aTemp
... Your code ...

10.10 Discussion

From a design perspective we see that the logger behavior is a much better
object than the converter. The logger keeps some internal data specific to
a location while the converter is stateless. Object-oriented programming
is much better for capturing object with state. This is why the converter
was a kind of silly objects but it was to get you started. Now it is rare that
the world we want to model and represent is stateless. This is why object-
oriented programming is a powerful way to develop complex programs.

106

10.11 Conclusion

10.11 Conclusion

In this chapter we built a simple temperature converter. We showed how de-
fine and execute unit tests using a Test Driven approach. The interest in test-
ing and Test Driven Development is not limited to Pharo. Automated testing
has become a hallmark of the Agile software development movement, and any
software developer concerned with improving software quality would do
well to adopt it.

We showed that tests are an important aid to measure our progress and also
are an important aid to define clearly what we want to develop.

107

CHA P T E R 11
An electronic wallet

In this chapter you will develop a wallet. You will start by designing tests to
define the behavior of our program, then we will define the methods accord-
ing. Pay attention we will not give you all the solutions and the code.

11.1 A first test

Since we want to know if the code we will develop effectively does what it
should do, we will write tests. A test can be as simple as verifying if our wal-
let contains money. To test that a newly created wallet does not contain
money we can write a test as follow:

| w |
w := Wallet new.
w money = 0.

However doing it is tedious because we would have to manually run all the
tests . We will use SUnit a system that automatically runs tests once we de-
fine them.

Our process will be the following one:

• imagine what we want to define

• define a test method

• execute it and check that it is failing

• define the method and fix it until the test pass.

With SUnit, tests are defined as methods inside a class subclass from Test-
Case. So let us start to define a test class named WalletTest inside the pack-
age Wallet.

109

An electronic wallet

TestCase subclass: #WalletTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Wallet'

And now we can define a test. To define a test, we define a method starting
with test. Here is the definition of the same test as before but using SUnit.

WalletTest >> testWalletAtCreationIsZero
| w |
w := Wallet new.
self assert: w money = 0

Now executing a test can be done in different ways:

• click on the icon close to the method in class browser,

• use the TestRunner tools,

• execute WalletTest debug: #testWalletAtCreationIsZero or
WalletTest run: #testWalletAtCreationIsZero

Now you should get started. Define the class Wallet inside the package Wal-
let.

Object subclass: #Wallet
instanceVariableNames: ''
classVariableNames: ''
package: 'Wallet'

Run the test! It should be red and now define the method money. For now
this method is plain stupid and will return 0. In the following of course it will
sum all the coins and return such sum.

Wallet >> money
^ 0

11.2 Adding coins

Now we should be able to add coins to a wallet. Let us first define a new test
testCoins.

WalletTest >> testCoins
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
self assert: w coinNumber = 5

The test adds several coins of different values and verifies that we did not
lose any coins.

110

11.3 Looking at Bag

Now we should think how we will represent our wallet. We need to count
how many coins of a given values are added or removed to a wallet. If we
use an array or an ordered collection, we will have to maintain a mapping
between the index and its corresponding value. Using a set will not really
work since we will lose the occurrence of each coins.

11.3 Looking at Bag

A good structure to represent a wallet is a bag, instance of the class Bag: a
bag keeps elements and their respective occurrences. Let us have a look at a
bag example before continuing. You can add and remove elements of a bag
and iterate on them. Let us play with it.

First we create a bag and we expect it to be empty:

| aFruitBag |
aFruitBag := Bag new.
aFruitBag size.
>>> 0

Then we add 3 bananas and verify that our bag really contains the three ba-
nanas we just added:

aFruitBag add: #Banana withOccurrences: 3.
aFruitBag size.
>>> 3

Now let us add different fruits:

aFruitBag add: #Apple withOccurrences: 10.
aFruitBag size.
>>> 13

Now we check that they are not mixed together.

aFruitBag occurrencesOf: #Apple.
>>> 10

We can also add a single fruit to our bag.

aFruitBag add: #Banana.
aFruitBag occurrencesOf: #Banana.
>>> 4

We can then iterate over all the contents of the bag using the message do:.
The code snippet will print on the Transcript (open>Tools>Transcript) all the
elements one by one.

7 timesRepeat: [aFruitBag remove: #Apple].
aFruitBag do: [:each | each logCr].

111

An electronic wallet

#Banana
#Banana
#Banana
#Banana
#Apple
#Apple
#Apple

Since for an element we know its occurrence we can iterate differently as
follows:

aFruitBag doWithOccurrences: [:each :occurrence | ('There is ' ,
occurrence printString , ' ', each) logCr]

We get the following trace in the Transcript.

'There is 4 Banana'
'There is 10 Apple'

We could change a bit the code to print correctly ’There is’ and ’There are’
depending on the occurrence. We left this as an exercise for you.

11.4 Using a bag for a wallet

Since we can know how many coins of a given value are in a bag, a bag is
definitively a good structure for our wallet.

We will define add an instance variable bagCoins to the class and the meth-
ods

• add: anInteger coinsOfValue: aCoinNumber,

• initialize, and

• coinsOfValue:.

Let us start with the method initialize. We define the method initial-
ize as follows. It is invoked automatically when an instance is created.

Wallet >> initialize
bagCoins := Bag new

Now define the method add: anInteger coinsOfValue: aNumber. Browse
the class Bag to find the messages that you can send to a bag.

Wallet >> add: anInteger coinsOfValue: aNumber
"Add to the receiver, anInteger times a coin of value aNumber"

... Your solution ...

We can define the method coinsOfValue: that returns the number of coins
of a given value (looks like the same as asking how many bananas are in the
fruit bag).

112

11.5 More tests

Wallet >> coinsOfValue: aNumber

^ ... Your solution ...

11.5 More tests

The previous test is limited in the sense that we cannot distinguish if the
coins are not mixed. It would be bad that a wallet would convert cents into
euros. So let us define a new test to verify that the added coins are not mixed.

WalletTest >> testCoinsAddition
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
self assert: (w coinsOfValue: 0.5) = 2

We should also test that when we add twice the same coins they are effec-
tively added.

WalletTest >> testCoinsAdditionISWorking
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 6 coinsOfValue: 0.50.
self assert: (w coinsOfValue: 0.5) = 8

11.6 Testing money

Now we can test that the moneymessage returns the amount of money con-
tained in the wallet and we should change the implementation of the money.
We define two tests.

WalletTest >> testMoney
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
w add: 1 coinsOfValue: 0.02.
self assert: w money = 1.62

WalletTest >> testMoney2
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
w add: 1 coinsOfValue: 0.02.
w add: 5 coinsOfValue: 0.05.
self assert: w money = 1.87

113

An electronic wallet

Now we should implement the method money.

Wallet >> money

^ ... Your solution ...

11.7 Checking to pay an amount

Now we can add a new message to know whether we can pay a certain amount.
But let us write some tests first.

WalletTest >> testCanPay
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
w add: 1 coinsOfValue: 0.02.
w add: 5 coinsOfValue: 0.05.
self assert: (w canPay: 2) not.
self assert: (w canPay: 0.50).

Define the message canPay:.

Wallet >> canPay: amounOfMoney
"returns true when we can pay the amount of money"

^ ... Your solution ...

11.8 Biggest coin

Now let us define a method to determine the largest coin in a wallet. We
write a test.

WalletTest >> testBiggestCoins
| w |
w := Wallet new.
w add: 10 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
self assert: w biggest equals: 0.50.

Note that the assert: message can also be replaced assert:equals: and
this is what we did: we replaced the expression self assert: w biggest =
0.5 by self assert: w biggest equals: 0.50.

Now we should define the method biggest.

114

11.9 Biggest below a value

Wallet >> biggest
"Returns the biggest coin with a value below anAmount. For

example, {(3 -> 0.5) . (3 -> 0.2) . (5-> 0.1)} biggest -> 0.5"

^ ... Your solution ...

11.9 Biggest below a value

We can also define the method biggestBelow: that returns the first coin
whose value is strictly smaller than the argument. {(3 -> 0.5) . (3 ->
0.2) . (5-> 0.1)} biggestBelow: 0.40 returns 0.2.

WalletTest >> testBiggestCoinsBelow
| w |
w := Wallet new.
w add: 10 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
self assert: (w biggestBelow: 1) equals: 0.50.
self assert: (w biggestBelow: 0.5) equals: 0.20.
self assert: (w biggestBelow: 0.48) equals: 0.20.
self assert: (w biggestBelow: 0.20) equals: 0.10.
self assert: (w biggestBelow: 0.10) equals: 0.

Wallet >> biggestBelow: anAmount
"Returns the biggest coin with a value below anAmount. For

example, {(3 -> 0.5) . (3 -> 0.2) . (5-> 0.1)} biggestBelow:
0.40 -> 0.2"

^ ... Your solution ...

11.10 Improving the API

Better string representation

Now it is time to improve the API for our objects. First we should improve
the way the wallet objects are printed so that we can debug more easily. For
that we add the method printOn: aStream as follows:

Wallet >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' (', self money asString, ')'

Easier addition

We can improve the API to add coins in particular when we add only one
coin. So now you start to get used to it. We define a test.

115

An electronic wallet

WalletTest >> testAddOneCoin
| w |
w := Wallet new.
w addCoin: 0.50.
self assert: (w coinsOfValue: 0.5) = 1.
self assert: w money equals: 0.5

Define the method addCoin:.

Wallet >> addCoin: aNumber
"Add to the receiver a coin of value aNumber"

... Your solution ...

Removing coins

We can now implement the removal of a coin.

WalletTest >> testRemove
| w |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 3 coinsOfValue: 0.20.
w add: 1 coinsOfValue: 0.02.
w add: 5 coinsOfValue: 0.05.
w removeCoin: 0.5.
self assert: w money = 1.37

Define the method removeCoin:.

Wallet >> removeCoin: aCoinNumber
"Remove from the receiver a coin of value aNumber"

... Your solution ...

We can generalize this behavior with a method remove:coinsOfValue:.
Write a test.

WalletTest >> testRemoveCoins
| w |
w := Wallet new.

... Your solution ...

Wallet >> remove: anInteger coinsOfValue: aCoin
"Remove from the receiver, anInteger times a coin of value aNumber"

bagCoins add: aCoin withOccurrences: anInteger

We can also define the method biggestAndRemove which removes the biggest
coin and returns it.

116

11.11 Coins for paying: First version

Wallet >> biggestAndRemove
| b |
b := self biggest.
self removeCoin: b.
^ b

11.11 Coins for paying: First version

Now we would like to know the coins that we can use to pay a certain amount.
We can define a method coinsFor: that will return a new wallet containing
the coins to pay a given amount.

This is a more challenging task and we will propose a first version then we
will add more complex situations and propose a more complex solution. So
let us define a test.

WalletTest >> testCoinsForPaying

| w paid |
w := Wallet new.
w add: 10 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
paid := (w coinsFor: 2.5).
self assert: paid money equals: 2.5.
self assert: (paid coinsOfValue: 0.5) equals: 5

Wallet >> coinsFor: aValue
"Returns a wallet with the largest coins to pay a certain amount

and an empty wallet if this is not possible"

| res |
res := self class new.
^ (self canPay: aValue)
ifFalse: [res]
ifTrue: [self coinsFor: aValue into: res]

The method coinsFor: creates wallet and fill with the largest coins com-
prising a given value.

Using the previously defined methods, define a first version of the method
coinsFor: aValue into: accuWallet.

Wallet >> coinsFor: aValue into: accuWallet

... Your solution ...

Here is a possible simple solution: we remove from the wallet the largest
coin and we add it to the resulting wallet. This solution is not working well
as we will show it.

117

An electronic wallet

Wallet >> coinsFor: aValue into: accuWallet

[accuWallet money < self money]
whileTrue: [accuWallet addCoin: self biggestAndRemove].

^ accuWallet

11.12 Better heuristics

Let us try some tests to see if our previous way to get coins is working. (The
previous algorithm does not work with such behavior.)

The first test checks that when there is no more coins of the biggest value,
we check that the next coin is then used.

WalletTest >> testCoinsForPayingWithOtherCoins
| w paid |
w := Wallet new.
w add: 1 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
paid := (w coinsFor: 2.4).
self assert: paid money equals: 2.4.
self assert: (paid coinsOfValue: 0.5) equals: 1.
self assert: (paid coinsOfValue: 0.2) equals: 9.

Run the tests and define the method coinsFor: to invoke a copy of the method
coinsFor: aValue into: accuWallet renamed coinsFor: aValue into2:
accuWallet to start with.

Wallet >> coinsFor: aValue
"Returns a wallet with the largest coins to pay a certain amount

and an empty wallet if this is not possible"
| res |
res := self class new.
^ (self canPay: aValue)
ifFalse: [res]
ifTrue: [self coinsFor: aValue into2: res]

The previous algorithm (implemented above in coinsFor: aValue into:)
does not work with such behavior. So you should start to address the prob-
lem and add more and more tests. The second test checks that even if there
is a coin with a largest value, the algorithm selects the next one. Here to pay
0.6, we should get 0.5 then we should not take 0.2 the next coin but 0.1 in-
stead.

WalletTest >> testCoinsForPayingWithOtherThanTop
| w paid |
w := Wallet new.
w add: 1 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.

118

11.13 Conclusion

w add: 10 coinsOfValue: 0.10.
paid := (w coinsFor: 0.6).
self assert: paid money equals: 0.6.
self assert: (paid coinsOfValue: 0.5) equals: 1.
self assert: (paid coinsOfValue: 0.1) equals: 1.

In this version we check that the algorithm should skip multiple coins that
are available. In the example, for 0.6 it should select: 0.5 then skip the re-
maining 0.5, and 0.2 to get one 0.1.

WalletTest >> testCoinsForPayingWithOtherThanTopMoreDifficult
| w paid |
w := Wallet new.
w add: 2 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
paid := (w coinsFor: 0.6).
self assert: paid money equals: 0.6.
self assert: (paid coinsOfValue: 0.5) equals: 1.
self assert: (paid coinsOfValue: 0.1) equals: 1.

The following one is a variant of the previous test where the biggest coin
should be skipped.

WalletTest >> testCoinsForPayingWithOtherThanTopMoreDifficult2
| w paid |
w := Wallet new.
w add: 1 coinsOfValue: 1.
w add: 2 coinsOfValue: 0.50.
w add: 10 coinsOfValue: 0.20.
w add: 10 coinsOfValue: 0.10.
paid := (w coinsFor: 0.6).
self assert: paid money equals: 0.6.
self assert: (paid coinsOfValue: 0.5) equals: 1.
self assert: (paid coinsOfValue: 0.1) equals: 1.

11.13 Conclusion

What this example shows is that while a wallet is essentially a bag, having a
wallet is a much more powerful solution. The wallet encapsulates an internal
representation and builds a more complex API around it.

119

CHA P T E R 12
Crafting a simple embedded DSL

with Pharo

In this chapter you will develop a simple domain specific language (DSL) for
rolling dice. Players of games such as Dungeons & Dragons are familiar with
such DSL. An example of such DSL is the following expression: 2 D20 + 1
D6 which means that we should roll two 20-faces dices and one 6 faces die. It
is called an embedded DSL because the DSL uses the syntax of the language
used to implement it. Here we use the Pharo syntax to implement the Dun-
geons & Dragons rolling die language.

This little exercise shows how we can (1) simply reuse traditional operator
such as +, (2) develop an embedded domain specific language and (3) use
class extensions (the fact that we can define a method in another package
than the one of the class of the method).

12.1 Getting started

Using the code browser, define a package named Dice or any name you like.

Create a test

It is always empowering to verify that the code we write is always working as
we defining it. For this purpose you should create a unit test. Remember unit
testing was promoted by K. Beck first in the ancestor of Pharo. Nowadays
this is a common practice but this is always useful to remember our roots!

Define the class DieTest as a subclass of TestCase as follows:

121

Crafting a simple embedded DSL with Pharo

faces:
roll
withFaces:

faces
Die

Figure 12-1 A single class with a couple of messages. Note that the method

withFaces: is a class method.

TestCase subclass: #DieTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

What we can test is that the default number of faces of a die is 6.

DieTest >> testInitializeIsOk
self assert: Die new faces equals: 6

If you execute the test, the system will prompt you to create a class Die. Do
it.

Define the class Die

The class Die inherits from Object and it has an instance variable, faces to
represent the number of faces one instance will have. Figure 12-1 gives an
overview of the messages.

Object subclass:
... Your solution ...

In the initialization protocol, define the method initialize so that it
simply sets the default number of faces to 6.

Die >> initialize
... Your solution ...

Do not hesitate to add a class comment.

Now define a method to return the number of faces an instance of Die has.

Die >> faces
^ faces

Now your tests should all pass (and turn green).

122

12.2 Rolling a die

Figure 12-2 Inspecting and interacting with a die.

12.2 Rolling a die

To roll a die you should use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRan-
dom draws number between 1 to 10. Therefore we define the method roll:

Die >> roll
... Your solution ...

Now we can create an instance Die new and send it the message roll and
get a result. Do Die new inspect to get an inspector and then type in the
bottom pane self roll. You should get an inspector like the one shown in
Figure 12-2. With it you can interact with a die by writing expression in the
bottom pane.

12.3 Creating another test

But better, let us define a test that verifies that rolling a new created dice
with a default 6 faces only returns value comprised between 1 and 6. This is
what the following test method is actually specifying.

DieTest >> testRolling
| d |
d := Die new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Important Often it is better to define the test even before the code it
tests. Why? Because you can think about the API of your objects and a
scenario that illustrate their correct behavior. It helps you to program
your solution.

123

Crafting a simple embedded DSL with Pharo

12.4 Instance creation interface

We would like to get a simpler way to create Die instances. For example we
want to create a 20-faces die as follows: Die withFaces: 20 instead of al-
ways have to send the new message to the class as in Die new faces: 20.
Both expressions are creating the same die but one is shorter.

Let us look at it:

• In the expression Die withFaces:, the message withFaces: is sent to
the class Die. It is not new, we constantly sent the message new to Die
to created instances.

• Therefore we should define a method that will be executed

Let us define a test for it.

DieTest >> testCreationIsOk
self assert: (Die withFaces: 20) faces equals: 20

What the test clearly shows is that we are sending a message to the class Die
itself.

Defining a class method

Define the class method withFaces: as follows:

• Click on the class button in the browser to make sure that you are edit-
ing a classmethod.

• Define the method as follows:

Die class >> withFaces: aNumber
"Create and initialize a new die with aNumber faces."
| instance |
instance := self new.
instance faces: aNumber.
^ instance

Let us explain this method

• The method withFaces: creates an instance using the message new.
Since self represents the receiver of the message and the receiver of
the message is the class Die itself then self represents the class Die.

• Then the method sends the message faces: to the instance and

• Finally returns the newly created instance.

Pay really attention that a class method withFaces: is sent to a class, and
an instance method sent to the newly created instance faces:. Note that the
class method could have also named faces: or any name we want, it does
not matter, it is executed when the receiver is the class Die.

124

12.4 Instance creation interface

If you execute it will not work since we did not create yet the method faces:.
This is now the time to define it. Pay attention the method faces: is sent to
an instance of the class Die and not the class itself. It is an instance method,
therefore make sure that you deselected the class button before editing it.

Die >> faces: aNumber
faces := aNumber

Now your tests should run. So even if the class Die could implement more
behavior, we are ready to implement a die handle.

Important A class method is a method executed in reaction to messages
sent to a class. It is defined on the class side of the class. In Die with-
Faces: 20, the message withFaces: is sent to the class Die. In Die new
faces: 20, the message new is sent to the class Die and the message
faces: is sent to the instance returned by Die new.

[Optional] Alternate instance creation definition

In a first reading you can skip this section. The class method definition with-
Faces: above is strictly equivalent to the one below.

Die class >> withFaces: aNumber
^ self new faces: aNumber; yourself

Let us explain it a bit. self represents the class Die itself. Sending it the
message new, we create an instance and send it the faces: message. And
we return the expression. So why do we need the message yourself. The
message yourself is needed to make sure that whatever value the instance
message faces: returns, the instance creation method we are defining re-
turns the new created instance. You can try to redefine the instance method
faces: as follows:

Die >> faces: aNumber
faces := aNumber.
^ 33

Without the use of yourself, Die withFaces: 20 will return 33. With your-
self it will return the instance.

The trick is that yourself is a simple method defined on Object class: The
message yourself returns the receiver of a message. The use of ; sends the
message to the receiver of the previous message (here faces:). The mes-
sage yourself is then sent to the object resulting from the execution of the
expression self new (which returns a new instance of the class Die), as a
consequence it returns the new instance.

125

Crafting a simple embedded DSL with Pharo

faces:
roll

faces
Die

roll
addDie:
+ aDieHandle

dice
DieHandle

Figure 12-3 A die handle is composed of dice.

12.5 First specification of a die handle

Let us define a new class DieHandle that represents a die handle. Here is the
API that we would like to offer for now (as shown in Figure 12-3). We create a
new handle then add some dice to it.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Of course we will define tests first for this new class. We define the class
DieHandleTest.

TestCase subclass: #DieHandleTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

Testing a die handle

We define a new test method as follows. We create a new handle and add one
die of 6 faces and one die of 10 faces. We verify that the handle is composed
of two dice.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber = 2.

In fact we can do it better. Let us add a new test method to verify that we can
even add two dice having the same number of faces.

DieHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DieHandle new.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber = 1.

126

12.6 Defining the DieHandle class

Figure 12-4 Inspecting a DieHandle.

handle addDie: (Die withFaces: 6).
self assert: handle diceNumber = 2.

Now that we specified what we want, we should implement the expected
class and messages. Easy!

12.6 Defining the DieHandle class

The class DieHandle inherits from Object and it defines one instance vari-
able to hold the dice it contains.

Object subclass: ...
... Your solution ...

We simply initialize it so that its instance variable dice contains an instance
of OrderedCollection.

DieHandle >> initialize
... Your solution ...

Then define a simple method addDie: to add a die to the list of dice of the
handle. You can use the message add: sent to a collection.

DieHandle >> addDie: aDie
... Your solution ...

Now you can execute the code snippet and inspect it. You should get an in-
spector as shown in Figure 12-4

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

127

Crafting a simple embedded DSL with Pharo

Finally we should add the method diceNumber to the DieHandle class to be
able to get the number of dice of the handle. We just return the size of the
dice collection.

DieHandle >> diceNumber
^ dice size

Now your tests should run and this is a good moment to save and publish
your code.

12.7 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the die handle. Click on the dice instance variable and you will only get a list
of a Dice without further information. What we would like to get is some-
thing like a Die (6) or a Die (10) so that in a glance we know the faces a
die has.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

This is the message printOn: that is responsible to provide a textual repre-
sentation of the message receiver. By default, it just prints the name of the
class prefixed with 'a' or 'an'. So we will enhance the printOn: method
of the Die class to provide more information. Here we simply add the num-
ber of faces surrounded by parenthesis. The printOn: message is sent with
a stream as argument. This is in such stream that we should add informa-
tion. We use the message nextPutAll: to add a number of characters to the
stream. We concatenate the characters to compose () using the message ,
comma defined on collections (and that concatenate collections and strings).

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector you can see effectively the number of faces a die han-
dle has as shown by Figure 12-5 and it is now easier to check the dice con-
tained inside a handle (See Figure 12-6).

12.8 Rolling a die handle

Now we can define the rolling of a die handle by simply summing result of
rolling each of its dice. Implement the rollmethod of the DieHandle class.
This method must collect the results of rolling each dice of the handle and
sum them.

128

Figure 12-5 Die details.

Figure 12-6 A die handle with more information.

Crafting a simple embedded DSL with Pharo

aDie(6)

aDieHandleroll

aDie (6)roll

aDie(10)
roll

client

client

Figure 12-7 A polymorphic API supports the Don’t ask, tell principle.

You may want to have a look at the method sum in the class Collection or
use a simple loop.

DieHandle >> roll
... Your solution ...

Now we can send the message roll to a die handle.

handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

handle roll

Define a test to cover such behavior. Rolling an handle of n dice should be
between n and the sum of the face number of each die.

DieHandleTest >> testRoll
... Your solution ...

12.9 About Dice and DieHandle API

It is worth to spend some times looking at the relationship between DieHan-
dle and Dice. A die handle is composed of dices. What is an important de-
sign decision is that the API of the main behavior (roll) is the same for a
die or a die handle. You can send the message roll to a dice or a die handle.
This is an important property.

Why? Because it means that from a client perspective, she/he can treat the
receiver without having to take care about the kind of object it is manipulat-
ing. A client just sends the message roll to an object and get back a number
(as shown in Figure 12-7). The client is not concerned by the fact that the
receiver is composed out a simple object or a complex one. Such design deci-
sion supports the Don’t ask, tell principle.

130

12.10 Role playing syntax

Important Offering polymorphic API is a tenet of good object-oriented
design. It enforces the Don’t ask, tell principle. Clients do not have to
worry about the type of the objects to whom they talk to.

For example we can write the following expression that adds a die and a
dieHandle to a collection and collect the different values (we convert the
result into an array so that we can print it in the book).

| col |
col := OrderedCollection new.
col add: (Die withFaces: 20).
col add: (DieHandle new addDie: (Die withFaces: 4); yourself).
(col collect: [:each | each roll]) asArray
>>> #(17 3)

About composition

Composite objects such document objects (a book is composed of chapters, a
chapter is composed of sections, a section is composed of paragraphs) have
often a more complex composition relationship than the composition be-
tween die and die handle. Often the composition is recursive in the sense
that an element can be the whole: for example, a diagram can be composed
of lines, circles, and other diagrams. We will see an example of such compo-
sition in the Expression Chapter 16.

12.10 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game,
i.e., using 2 D20 to create a handle of two dice with 20 faces each. For this
purpose we will define class extensions: we will define methods in the class
Integer but these methods will be only available when the package Dice will
be loaded.

But first let us specify what we would like to obtain by writing a new test
in the class DieHandleTest. Remember to always take any opportunity to
write tests. When we execute 2 D20 we should get a new handle composed of
two dice and can verify that. This is what the method testSimpleHandle is
doing.

DieHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber = 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol named *NameOfYourPackage ('*Dice’ if you named your package
'Dice'). The * (star) prefixing a protocol name indicates that the protocol
and its methods belong to another package than the package of the class.

131

Crafting a simple embedded DSL with Pharo

Here we want to say that while the method D20 is defined in the class Inte-
ger, it should be saved with the package Dice.

The method D20 simply creates a new die handle, adds the correct number of
dice to this handle, and returns the handle.

Integer >> D20
... Your solution ...

About class extensions

We asked you to place the method D20 in a protocol starting with a star and
having the name of the package ('*Dice') because we want this method to
be saved (and packaged) together with the code of the classes we already cre-
ated (Die, DieHandle,...) Indeed in Pharo we can define methods in classes
that are not defined in our package. Pharoers call this action a class exten-
sion: we can add methods to a class that is not ours. For example D20 is de-
fined on the class Integer. Now such methods only make sense when the
package Dice is loaded. This is why we want to save and load such meth-
ods with the package we created. This is why we are defining the protocol as
'*Dice'. This notation is a way for the system to know that it should save
the methods with the package and not with the package of the class Integer.

Now your tests should pass and this is probably a good moment to save your
work either by publishing your package and to save your image.

We can do the same for the default dice with different faces number: 4, 6,
10, and 20. But we should avoid duplicating logic and code. So first we will
introduce a new method D: and based on it we will define all the others.

Make sure that all the new methods are placed in the protocol '*Dice'. To
verify you can press the button Browse of the Monticello package browser
and you should see the methods defined in the class Integer.

Integer >> D: anInteger
... Your solution ...

Integer >> D4
^ self D: 4

Integer >> D6
^ self D: 6

Integer >> D10
^ self D: 10

Integer >> D20
^ self D: 20

We have now a compact form to create dice and we are ready for the last
part: the addition of handles.

132

12.11 Handle’s addition

12.11 Handle’s addition

Now what is missing is that possibility to add several handles as follows: 2
D20 + 3 D10. Of course let’s write a test first to be clear on what we mean.

DieHandleTest >> testSumming
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5.

We will define a method + on the HandleDice class. In other languages this
is often not possible or is based on operator overloading. In Pharo + is just a
message as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one. We
preferred a more functional style and choose to create a third one.

The method + creates a new handle then add to it the dice of the receiver and
the one of the handle passed as argument to the message. Finally we return
it.

DieHandle >> + aDieHandle
... Your solution ...

Now we can execute the method (2 D20 + 1 D6) roll nicely and start
playing role playing games, of course.

12.12 Conclusion

This chapter illustrates how to create a small DSL based on the definition of
some domain classes (here Dice and DieHandle) and the extension of core
class such as Integer. It also shows that we can create packages with all the
methods that are needed even when such methods are defined on classes
external (here Integer) to the package. It shows that in Pharo we can use
usual operators such as + to express natural models.

133

Part III

Sending messages

CHA P T E R 13
Sending a message is making a

choice

In this chapter we explore an essential point of object-oriented programming:
Sending a message is making a choice!

Object-oriented programming books often present late binding: the fact that
the method to execute will only be determined at runtime based on the re-
ceiver. In fact sending a message uses late binding to select the correct method.
I like to use the term sending a message because it stresses that simple actions,
such as sending a message, are also a powerful feature when used well.

This aspect is often not really well put in perspective in teaching materials.
Lectures often focus on inheritance but understanding the power of message
passing it crucial to build good design. This point is so central for me that
this is the first point that I explain when I start lectures on advanced design
to people already understanding object-oriented programming. In addition,
most of the Design Patterns are based on the fact that sending a message is
actually selecting the correct method based on the message receiver.

To illustrate how sending a message performs a dynamic choice, I will start
taking a simple example available in the core of Pharo: the Booleans. Pharo
defines Booleans as two objects: true and false. They are so fundamental
that you cannot change their value. Still their implementation also use late
binding in a really elegant way. I will explain how the Boolean negation and
the disjunction (or) are implemented. Then I will step back and analyse the
forces in presence and their importance.

137

Sending a message is making a choice

13.1 Negation: the not message

Boolean negation has nothing special in Pharo: negating a boolean returned
the negated value! For example the snippets below show this conventional
behavior and vice versa.

Sending the message not to the Boolean true returns the Boolean false.

true not
>>> false

false not
>>> true

Nothing fancy. Of course the message not can be sent to Boolean expressions
(i.e. expressions whose execution return Booleans) as shown below:

(2 * 4 > 3) not
>>> false

(#(1 2 3) includes: 5) not
>>> true

Now while Pharo follows traditional Boolean logic, what is less traditional is
the implementation of the way the computation is done to answer the cor-
rect value.

13.2 Implementing not

Take a couple of minutes and a piece of paper and think about the way you
would implement this message. Try really to write the code for real.

A first hint.

A first hint that I can give you is that the solution (used in Pharo and that we
want to study) does not use explicit conditional such as ifTrue: or ifTrue:if-
False:.

Take a bit more time to think how you can implement not. What we can tell
you is the solution is not based on bit fiddling and logical operation on small
integers. The solution we are looking for is simple and elegant.

A second hint.

The second hint is that true and false are instances of different classes.
true is (the unique) instance of the class True while false is (the unique) in-
stance of the class False. Note the uppercase on class names. This situation
is depicted in Figure 13-1.

138

13.2 Implementing not

True False

true false

<<instance>><<instance>>

Figure 13-1 The two classes True and False and their respective unique in-

stances true and false.

not

True

not

False

true false
<<instance>><<instance>>

not

 ^ false

not

 ^ true

Figure 13-2 Two methods for one message.

not

True

not

False

true false
<<instance>><<instance>>

not

 ^ false

not

 ^ true

Figure 13-3 Two methods for one message each one returning the other in-

stance.

What you should see is that the fact that the solution has two different classes
opens the door to have two different not implementations as shown by Fig-
ure 13-2. Indeed, as we mention in early chapters, we can have one message
and multiple methods that we will be selected and executed depending on
the receiver of the message.

Now you should be ready to get the solution. We should have a definition for
the true defined in the class True and one for false in the class False.

Studying the implementation

The implementation of negation (message not) is defined as illustrated in
Figure 13-3 and is shown below. The method not of the class True simply
returns the Boolean false.

True >> not
"Negation--answer false since the receiver is true."
^ false

139

Sending a message is making a choice

not

True

not

False

true false

<<instance>>

not

 ^ false

not

 ^ true

not not

Figure 13-4 Sending a message selects the method in the class of the receiver.

False >> not
"Negation--answer true since the receiver is false."
^ true

Figure 13-4 shows that sending a message to one of the two Booleans selects
the method in the corresponding class. What is important to see is that when
a method is executed the receiver is from the class (or subclass we will see
that later) that defines the method. We can also say that when we define a
method in a given class we know that the receiver is from this class. Obvious,
isn’t it! But important. The implementation can then use this information
as an execution context. This is exactly what the not implementation does.
The method not defined on the class True knows that the receiver is true so
it just has to return false.

Note When we define a method in a given class we know that the re-
ceiver is from this class. Obvious but important. The implementation can
then use this information.

Now we will see if you get it... Let us try with a slightly more complex exam-
ple.

13.3 Implementing disjunction

Disjunction is also a core functionality of any programming language. In
Pharo disjunction is expressed via the message |. Here are the traditional
tables describing disjunction but expressed in Pharo: first starting with true
as receiver.

or true false
true true true
false true false

Here are a couple of examples expressed in Pharo.

true | true
>>> true

140

13.3 Implementing disjunction

true | false
>>> true

false | false
>>> false

For the record, in fact the message | implements an eager disjunction since
it asks the value of its argument even when not needed and Pharo also offers
lazy disjunction implemented in the message or: which only requests the
argument value if needed.

When receiver is true.

Propose an implementation of the disjunction for the first case: i.e. when the
receiver is the object true.

or true false
true true true

What you should have learned from the implementation of not is that you
have two different methods taking advantage of the fact that they know
what is the receiver during their execution.

true | true
>>> true

true | false
>>> true

true | anything
>>> true

When you look at the table we see that when the receiver is true the result
is the same as the receiver (i.e. true). In Pharo the method | on class True
express this as follows:

True >> | aBoolean
"Evaluating Or -- answer true since the receiver is true."
^ true

When receiver is false.

Similarly let us study the Boolean table relative to false as receiver.

or true false
false true false

Here are some snippets

false | true
>>> true

141

Sending a message is making a choice

not
| arg

True
not
| arg

False

true false

^ arg
^ self

Figure 13-5 Disjunction implementation: two methods.

false | false
>>> false

false | anything
>>> anything

We see that when the receiver is false, the result of the disjunction is the
other argument. In Pharo the method | on class False is then as follows:

False >> | aBoolean
"Evaluating Or -- answer with the argument, aBoolean."
^ aBoolean

13.4 About ifTrue:ifFalse: implementation

Now you should start to get the principle. Let us see how it works to also
express conditional messages such as ifTrue:ifFalse:. Yes fundamental
messages such as conditionals can be expressed using the same mechanism:
late binding.

What you see with the following snippet is that message ifTrue:ifFalse: is
expecting two different blocks as argument.

4 factorial > 20
ifTrue: ['bigger']
ifFalse: ['smaller']

>>> 'bigger'

Now you should know that to execute a block you should use the message
value as illustrated:

[1 + 3] value
>>> 4

Block can contain any expressions. The execution of the following block will
open the Pharo logo.

[(ZnEasy getPng: 'http://pharo.org/web/files/pharo.png')
asMorph openInWindow] value

142

13.5 What is the point?

not
| arg
ifTrue:ifFalse:

True
not
| arg
ifTrue:ifFalse:

False

true false

ifTrue: trueBlock ifFalse: falseBlock

 ^ trueAlternativeBlock value

ifTrue: trueBlock ifFalse: falseBlock

 ^ falseAlternativeBlock value

Figure 13-6 Conditional implementation: again two methods and no explicit

tests.

Let us come back to the case of condition and in particular to the message
ifTrue:ifFalse:. Based on the receiver we should execute the correspond-
ing block from the ifTrue:ifFalse: method. When the expression (4 fac-
torial > 20 in the example above) is true we should execute the ifTrue:
argument, when it is false we should execute the ifFalse: argument.

Implementation.

The implementations is then simple and elegant. In the True class, we want
to execute the corresponding block, the one passed as ifTrue: argument as
shown in Figure 13-6.

True >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^ trueAlternativeBlock value

Similarly in the False class, we want to execute the corresponding block, the
one passed as ifFalse: argument.

False >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^ falseAlternativeBlock value

Optimisation.

What we show above works! But if you modify it, the modification will not
be taken into account. This is because in Pharo ifTrue:ifFalse: is used so
often and its semantics should not change that the compiler in fact does not
send a message but convert it in low-level logic for the virtual machine. Now
you can invent your own conditional message siVrai:siFaux: for a french
version for example and you will see that this implementation works.

13.5 What is the point?

Some readers may be intrigued and think that this is spurious because they
will never have to reimplement Booleans in their life. This is true even if
there are different versions of Boolean logic such as the ternary logic that
contains also unknown value.

143

Sending a message is making a choice

We picked the Boolean examples to illustrate an important point: sending
a message is making a choice. The runtime system will dynamically select
the method depending on the receiver. This is what is called late binding or
dynamic dispatch. Only at execution the correct method is selected. Now the
Boolean example is the simplest one I could find to illustrate this point. It is
also ground breaking in the sense that it touches something as fundamental
as Boolean main operations.

Now the choices can be made over several dozens of classes. For example in
Pillar the document processing system in which this book is written there
are around 59 different classes expressing different parts of a document: sec-
tion, title, bold, paragraph... and the same principle applies there. The sys-
tem selects the correct methods to render text, LaTeX or HTML using exactly
the same principle.

Now most of the time you can express the same using conditions (except for
the Boolean example and this is why I asked you to implement Boolean logic
since you do not want to have Boolean logic to be based on condition because
this is inefficient) as follows:

emitHTML: stream
self == PRList
ifTrue: [...]
self == PRParagraph

ifTrue: [...]
...

The problems with such explicit conditions is the following:

• First, they are cumbersome to write. Even using case statements as in
other languages, the logic can become complex. Imagine for 59 cases of
Pillar. Here is a small part of the document hierarchy.

PRObject #(''properties'')
PRDocumentItem #(''counter'')

PRDocumentGroup #(''children'')
PRDocument #()
PRHeader #(''level'')
PRList #()

PROrderedList #()
PRUnorderedList #()

PRParagraph #()
PRReference #(''reference'' ''parameters'')

PRFigure #()
PRSlide #(''title'' ''label'')

PRText #(''text'')'

• Second, such definitions are not modular. It means that adding a new
case requires to edit the method and recompile it. While with the dy-
namic dispatch, we can just add a new class as shown in Figure 13-7.

144

13.5 What is the point?

Operation1
Operation2

Attribute
Attribute

Fat Class
Class

Operation
A

Operation
B'

Operation
C'

Operation
Attribute

B
Operation

C

Figure 13-7 One single class vs. a nice hierarchy.

PackagePackage

Class

Operation
A

Operation
B'

Operation
C'

Operation
Attribute

B
Operation

C
Operation

D

Figure 13-8 One single class vs. a nice hierarchy.

Furthermore this class can just take advantage of an existing one and
extend it (as we will explained in Chapter 14).

You could think that this is a not a problem but imagine that now for a busi-
ness you want to ship different products or solutions to your clients. With
dynamic dispatch you can simply package alternate code in separate pack-
ages and load them independently as shown in Figure 13-8.

Classes represent choices

Sending a message is making a choice. Now the following question is which
elements represent choices. Because you can have the possibility to chose
something but if there is only one choice you will not go that far and take
advantage of the power of late binding.

In fact classes represent choices. In the Boolean case you have two choices
one for true and one for false. There is a really difference for example be-
tween the FatClass design (left in Figure 13-7) and the modular design (right
in Figure 13-7) because we see all the choices which can be made at runtime

145

Sending a message is making a choice

in the latter case.

When I do code review, I looked at how domain variations are represented
and if there are enough classes. What is important to realise is that classes
are cheap. It is better to write 5 little classes than a huge one. Some (even
smart) people get confused by measuring complexity of a system using num-
ber of classes. Having many classes representing good abstractions with a
single responsibility is much better than having a single class exhibiting mul-
tiple responsibilities.

13.6 Conclusion

Sending a message is really powerful since it selects the adequate method
to be executed on the receiver. Now this is even more powerful than that:
Remember that when we execute a method, one key information we have
at hand is that the receiver is an instance from this class (or one of its sub-
classes as we will see later) and we can take advantage of this information to
eliminate tests. Indeed an object executes a method that have been designed
to be executed on it. So no need to test more.

Now you should start to understand why in Pharo we are picky about the
vocabulary: we use sending a message and not calling a method as in other
language. Because sending a message conveys much better the idea that the
correct method will be selected and that we do not know a priori which one
will be executed.

In future chapters we will show that sending a message is creating in fact a
hook so that other methods can be executed in place.

146

Part IV

Looking at inheritance

CHA P T E R 14
Inheritance: Incremental

definition and behavior reuse

In Chapter 8, we presented objects and classes. Objects are entities that com-
municate exclusively by sending and receiving messages. Objects are de-
scribed by classes that are factories of objects. Classes define behavior and
structure of all their instances: All the instances of a class share the same
behavior but have their own private state.

In this chapter we present the fundamental concept of inheritance that al-
lows a class to reuse and extend the behavior of another class. The idea is
that as a programmer we do not want to rewrite from scratch a functionality
if another class already offers it. A programm specialises the implemented
behavior into the new behavior he wants. Inheritance lets us express this
concept specialisation. Using inheritance we create trees of concepts where
more precise ones refine more abstract and generic ones.

Inheritance is based on dynamic method lookup: a method is looked up dy-
namically within the inheritance tree starting from the class of the receiver.
Once this explained we will show that it is possible to get code of a subclass
invoked in place of the one of a superclass.

To illustrate the important points of inheritance, we revisit the example of
Chapter 8.

14.1 Inheritance

Object-oriented programming is also based on the incremental definition of
abstractions. This incremental definition mechanism is central to support
reuse and extension of abstraction. It is called inheritance. The idea is that

149

Inheritance: Incremental definition and behavior reuse

parent:
name:
printOn: aStream
size
contents:
search: aString

name
parent
contents

File

astroboybabar

printOn: aStream
parent:
name:
addElement: aFile
size
search: aString

name
parent
files

Directory

oldcomicscomics

Figure 14-1 Two classes understanding similar sets of messages and structuring

their instances in a similar way.

you can define a new abstraction (a class) by refining an existing one (its
superclass). We said that a subclass inherits from a superclass. This way
we reuse the code of the superclass instead of rewriting everything from
scratch.

Class inheritance creates trees of classes. Such trees are based on generalisa-
tion: a superclass is more generic than its subclasses. A class in such trees
can have instances. All the instances share the behavior defined in their
class and superclasses. This is within such trees that the system looks up the
method corresponding to a message sent to an instance of a class.

Inheritance supports code reuse because instance variable and methods de-
fined in a root concept (class) are applicable to its refinements (subclasses).

We will use and extend the simple and naive example of files and directories
(seen in Chapter 8) to illustrate the key aspects of inheritance. While simple,
it is enough to show the key properties of inheritance that we want to illus-
trate:

• incremental definition: a subclass is defined by expressing the difference
to its superclass. A subclass specialises its superclass behavior.

• state reuse: instances of a subclass have at least the state structure of
the superclass.

• behavior reuse: upon message reception instances, when the class of
the receiver does not define a method, methods of the superclasses are
executed instead.

• behavior redefinition (overriding): a subclass may change locally a method
definition inherited from its superclass.

• behavior extension: a subclass often extends the behavior of one of its
superclasses by defining new methods and state.

• subclass behavior can be invoked instead of superclass behavior: behavior
defined in a subclass may be executed in place of the one of a super-

150

14.2 Improving files/directories example design

class. It means that with behavior overriding subclass behavior can
be invoked in place of superclass behavior. This is a really important
feature of inheritance.

14.2 Improving files/directories example design

Let us go back to the example of files and directories introduced in previous
chapter. When we look at the situation depicted by Figure 14-1 we see that
a file is not the same as a directory, even though they share some common
state: both have a name and a parent. In addition, they understand some
common messages such as size, search:, parent: and name:. Remember
that size and search: were not implemented the same way but the mes-
sages have indeed the same name.

Load the code so that you can get the tests that we asked you to define at the
end of chapter 8.

Gofer new
smalltalkhubUser: 'StephaneDucasse' project: 'Loop';
version: 'MyFS2-StephaneDucasse.4';
load

Verify that the tests are all passing (green).

Objectives

In the following sections we will take advantage of defining a common su-
perclass and reuse its definition as shown in Figure 14-2: It means sharing
the maximum structure and behavior between the two classes. We will pro-
ceed step by step so that you can see all the steps and understand why this is
working.

14.3 Transformation strategies

Let us define a new class called MFElement.

Object subclass: #MFElement
instanceVariableNames: ''
classVariableNames: ''
package: 'MyFS2'

As you may noticed it, this class is empty. Now we have two possible strate-
gies:

• either we make MFFile and MFDirectory inherit from MFElement and
step by step we migrate the common state and behavior to the super-
class,

151

Inheritance: Incremental definition and behavior reuse

printOn: aStream
contents: aString
size
search: aString

contents
File

astroboybabar

printOn: aStream
addElement: anElement
size
search: aString

files
Directory

oldcomicscomics

parent:
printOn: aStream
name:

name
parent

Element

Figure 14-2 Two class taking advantages of inheriting from a common super-

class.

• or we define new state and behavior in MFElement and we remove
it from the two classes and when ready we make them inherit from
MFElement.

The second approach may work but it is too risky. Indeed with the first ap-
proach we can get a running system after any step we perform: why? Be-
cause we first inherit from the new class and move element from the sub-
classes to the classes and doing so we automatically reuse the superclass be-
havior and state so our program externally (for example from the test per-
spective) is not changed. With such an approach we can run our tests after
any change and control our enhancements.

In addition, some of the operations such as moving an instance variable from
a class to its superclass are tedious to perform. Here we will perform one
operation manually but for the rest of the changes we will use refactorings
– refactorings are program transformations that keep the behavior of the
program the same.

Let us get started.

14.4 Factoring out state

The first step is to make MFFile and MFDirectory subclasses of MFElement
as follows:

MFElement subclass: #MFFile
instanceVariableNames: 'parent name contents'
classVariableNames: ''
package: 'MyFS2'

152

14.4 Factoring out state

parent:
name:
printOn: aStream
contents: aString
size
search: aString

contents
parent

File

astroboybabar

parent:
name: printOn:
aStream
addElement: aFile
size
search: aString

files
parent

Directory

oldcomicscomics

name
Element

Figure 14-3 Moving the instance variable name to the superclass.

MFElement subclass: #MFDirectory
instanceVariableNames: 'parent name files'
classVariableNames: ''
package: 'MyFS2'

Now you can execute the tests and they will all pass. Now we get ready move
some instance variables to the superclass.

Moving instance variable name to superclass

Since both MFDirectory and MFFile define that their instances should have
a name, we can remove the instance variable name from them and uniquely
define it in the superclass. We obtain the situation depicted in Figure 14-3.
Let us do that as follows: We remove it first from the MFFile and MFDirec-
tory classes.

MFElement subclass: #MFFile
instanceVariableNames: 'parent contents'
classVariableNames: ''
package: 'MyFS2'

MFElement subclass: #MFDirectory
instanceVariableNames: 'parent files'
classVariableNames: ''
package: 'MyFS2'

And we add the instance variable name to the superclass MFElement.

Object subclass: #MFElement
instanceVariableNames: 'name'
classVariableNames: ''
package: 'MyFS2'

Pay attention that you should be careful and do it in this order else you may
be in the situation where name will be defined in the superclass and in one of
the subclasses and the system does not allow this and will forbid your action.

153

Inheritance: Incremental definition and behavior reuse

Figure 14-4 Applying the Pull Up Instance variable refactoring.

Again run the tests they should pass again.

What the tests execution proves is that we did not change the structure of
the instances of MFFile and MFDirectory. Indeed the structure of an in-
stance is computed from the instance variable lists defined in their class and
all the superclasses of that class.

Moving parent to the superclass

Since parent is defined in both subclasses, we can do the same for the in-
stance variable parent to obtain the situation shown in Figure 14-5. You
can do it manually as we did for the instance variable name but you can use
a refactoring: Refactorings are powerful program transformation. Using the
system browser, bring the menu on the class MFFile select refactoring and
select the instance variable category and finally pull up as shown in Figure
14-4.

The system will ask you which variable you want to pull up, select parent. It
will show you the changes that it is about to perform: removing the instance
variable from both subclasses and adding one to the superclass. Proceed and
the changes will be executed. Your code should be now in the situation de-
picted in Figure 14-5. Run the tests and they should again all pass!

What is important to see is that if we create a new subclass of MFElement, the
instances of such class will automatically get name and parent as instance
variables. This is one of the key property of inheritance: you can define a
new abstraction structure by extending an existing one.

Now we can do the same for the behavior: we will move similar methods in
the superclass and remove them from their respective classes.

154

14.5 Factoring similar methods

parent:
name:
printOn: aStream
contents: aString
size
search: aString

contents
File

astroboybabar

parent:
name:
printOn: aStream
addElement: aFile
size
search: aString

files
Directory

oldcomicscomics

name
parent

Element

Figure 14-5 State factored between the two classes and their superclass.

Figure 14-6 State and Methods factored out in the superclass.

14.5 Factoring similar methods

The methods parent:, parent and name: are the same and defined in the
two classes MFFile and MFDirectory. We will move them to the superclass
MFElement following a similar process.

• First we will remove the method name: from the two classes MFFile
and MFDirectory and add one version to the class MFElement. You can
do this manually.

• Second for the method parent:, use the method Refactoring Push Up
Method that is available from the method list. You can repeat this for
the method parent too.

You should obtain the system described in Figure 14-6.

Again run the tests and they should all pass. Why? Let us see what is happen-
ing when we send a message.

155

Inheritance: Incremental definition and behavior reuse

Figure 14-7 When an object receives a message, the corresponding method is

looked up in its class and if necessary its superclasses (Step 1 and 2). Then the

method is executed on the message receiver (Step 3).

14.6 Sending a message and method lookup

Now it is time to explain what is happening when an object receives a mes-
sage. In fact this is really simple but extremely powerful. When a message is
sent to an object, first the corresponding method is looked up and once the
method is found, it is executed on the object that initially received the mes-
sage.

• Method Lookup. When an object, the message receiver, receives a
message, the method with the same selector than the message is looked
up starting from the class of receiver (See step 1 in Figure 14-7). When
there is no method with the same selector, the look up continues in the
superclass of the current class (See step 2 in Figure 14-7).

• Method execution. When a method with the same selector is found in
a class, it is returned and executed on the receiver of the message (See
step 3 in Figure 14-7).

Let us look at our example.

• When we send the message astroboy parent: oldcomics, the method
named parent: is looked up in the class of the receiver i.e., MFFile.
This class defines such a method, so it is returned and executed on the
file astroboy.

• The tests pass because when we send the message parent: to an in-
stance of the class MFFile, the corresponding method is looked up in
the class MFFile. Since there is no method parent: in the class MF-

156

14.7 Basic method overrides

File, the lookup continues in the superclass and find it in the class
MFElement as shown in Figure 14-7.

Inheritance properties

While rather simple, the previous example shows some key properties of
inheritance.

Inheritance is a mechanism to define abstraction incrementally: a subclass
is defined by expressing the difference to its superclass. A subclass refines a
general concept into a more specific one. The classes MFFile and MFDirec-
tory add extra behavior and state to the one defined in the superclass. As
such they reuse the state and behavior of their superclass.

• State reuse: instances of a subclass have at least the structure of their
superclasses (name and parent), local state can be added in addition
(contents and files).

• Behavior reuse: when instances of a subclass receive a message, methods
of the superclass may be executed. The method parent:, parent, and
name are defined in MFElement but are executed on instances of the
subclasses.

Inheritance creates trees of refined concepts. A superclass represents a more
abstract concepts and its subclasses make it more and more specific by refin-
ing the superclass behavior or extending it by adding new behavior.

14.7 Basic method overrides

Since the method lookup starts from the class of the receiver, redefining a
method in subclass takes precedence over the method defined in the super-
classes.

If we define a method with the same name that one of its superclass, this new
method will be executed instead of the one in the superclass. This is called
a method override. This is useful to be able to redefine locally a behavior tak-
ing advantage of the specificities of the subclasses. In Figure 14-7, if we add
a new method named parent: in the class MFFile, this method will be exe-
cuted when the message parent: is sent to an instance of the class File.

We will see later that we can also invoke the method of the superclass while
doing a method overrides: it is useful when we want to extend and not just
fully change the superclass behavior.

But before explaining this, method lookup and execution are systematically
applied and we will see in the following sections that it is even more power-
ful than it may look at first sight.

157

Inheritance: Incremental definition and behavior reuse

14.8 self-send messages and lookup create hooks

So far we explained how a message is resolved: first the corresponding method
is looked up from the class of the receiver and goes up the inheritance tree.
Second, the found method is executed on the message receiver. It means that
in response to a message, a superclass method may be executed on its sub-
class instances. This is the same for message sent to self (the receiver of
the message), we invoke the method lookup and selfmay be one subclass
instances.

There is an important implication: when we have a message sent to self
in a method, this message may lead to the execution of a method defined in
subclasses: because a subclass may override such method. This is why self-
sends are also called hooks methods. We will explain carefully this point.

Example

To explain precisely this important point, let us define a new little behavior:
to build a better user interface for end-users we add a new message called
describe that presents in more human friendly way the receiver of the mes-
sage. Here is a small example:

| p el1 el2 |
p := MFDirectory new name: 'comics'.
el1 := MFFile new name: 'babar'; contents: 'Babar et Celeste'.
p addElement: el1.
el2 := MFFile new name: 'astroboy'; contents: 'super cool robot'.
p addElement: el2.
p describe
>>> 'I m a directory named comics'
el1 describe
>>> 'I m a file named babar'

Describe implementation

We implement now the situation described by Figure 14-8. To implement this
behavior, we define the following method describe in the class MFElement.

MFElement >> describe
^ 'I m a ', self kind, 'named ', name

We define the method kind to return a default string, even though we do
not expect to create instances of this class and subclasses should define their
own definition.

MFElement >> kind
^ 'element'

In each of the subclasses, we define a corresponding method kind, as follows:

158

14.9 Hook/Template explanations

MFDirectory >> kind
^ 'directory'

MFFile >> kind
^ 'file'

14.9 Hook/Template explanations

Now we are ready to explain what is happening. Let us illustrate the execu-
tion of the (MFFile new name: 'astroboy') describe.

| el1 |
el1 := (MFFile new name: 'astroboy').
el1 describe
>>> 'I m a file named astroboy'

The following steps are executed:

• The message describe is sent to el1 an instance of the class MFFile.

• The method describe is looked up in the class MFFile (step 1 in Figure
14-8). It is not found, therefore the lookup continues to the superclass.

• The lookup looks for the method describe in the class MFElement
(step 2 in Figure 14-8). It is found and executed on the receiver: el1.

• During the execution of the method describe, a new message kind
using the expression self kind is sent (step 3 in Figure 14-8).

• The message kind is looked up starting from the class of the receiver,
MFFile (step 4 in Figure 14-8). The method kind is found in class MF-
FIle and executed.

• The rest of the method describe is executed and the resulting string is
returned.

A vocabulary point: the method describe is called a template method be-
cause it creates a context in which the kindmethods are executed. The mes-
sage kind is called a hook since subclass implementation may be invoked in
this place.

This example illustrates the following important points:

• Each time we send a message the system chooses the correct method to
be executed.

• Each time we send a self-send message we create a place where sub-
class methods may be executed. We create customisation points.

• Since self represents the receiver and that the receiver may be an
instance from a class that is not loaded at the time the method con-
taining the self-send, we say that self is dynamic. It represents the re-

159

Inheritance: Incremental definition and behavior reuse

Figure 14-8 A self-send creates a hook (kind) that subclasses override. The
method describe is called a template because it creates a context.

ceiver of the message and the lookup for the method to execute starts
in the class of the receiver.

Important Messages sent to the receiver (self sends) define customiza-
tion points that subclasses can take advantage of to potentially see their
code being executed in place of the superclass’ one.

14.10 Essence of self and dispatch

Now we take some time to look abstractly at what we presented so far. Imag-
ine a situation as illustrated by Figure 14-9.

The first questions are simple and should be not a problem for you. Without
looking at the solutions guess what are the results of the following messages.

A new foo
>>> ...
B new foo
>>> ...

What is more interesting is the process to get the result of B new bar.

A new bar
>>> ...
B new bar
>>> ...

160

14.10 Essence of self and dispatch

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

Figure 14-9 Self semantics abstractly explained.

Solutions

The solutions are the following ones.

A new foo
>>> 10

B new foo
>>> 50

A new bar
>>> 10

B new bar
>>> 50

The most interesting one is B new bar. Let us look at the execution of aB
bar

1. aB’s class is B.

2. The method look up starts in the class B.

3. There is no method bar in B.

4. The look up continues in A and method bar is found.

5. The method bar is executed on the receiver aB.

6. self refers to the receiver aB.

7. The message foo is sent to self.

8. The look up of foo starts in the aB’s class: B.

9. The method foo is found in class B and executed on the receiver aB.

Important self represents the receiver. Messages sent to it are looked
up from the class of the receiver.

161

Inheritance: Incremental definition and behavior reuse

14.11 Instance variables vs. messages

Reading the previous section you should now understand that there is in fact
a difference between accessing directly an instance variable such as name in
the method below and using an accessor as illustrated in the next redefini-
tion.

The two following method definitions are doing the same but have different
extensibility potential.

MFElement >> describe
^ 'I m a ', self kind, 'named ', name

MFElement >> describe
^ 'I m a ', self kind, 'named ', self name

When you use an accessor, subclasses may redefine the behavior of the acces-
sors.

MFElement >> name
^ name

There is no systematic rule that states that we should systematically use ac-
cessors instead of instance variable access.

What is important when you decide to use an accessor is to use it consis-
tently. Indeed if some parts use direct instance variable access and other
parts use accessors, then a programmer extending your code may redefine
the accessors in a subclass and his code may not be invoked (for example if
you left places where you directly access an instance variable).

In addition when you decide to use in your class an accessor it is also better
that you do so for all the instance variables of the class. Else we may wonder
why and uniformity makes the code more understandable.

14.12 Conclusion

We presented the concept of inheritance: a subclass is defined as a refine-
ment of a superclass. It reuses the superclass behavior and may extend the
structure its instances will have. We show that method lookup happens dy-
namically and walks the inheritance tree starting from the receiver class. We
show that self-sends are creating hooks in the sense that subclass methods
may be executed in place of the superclass counterpart.

In the following chapter we will see that we can reuse even more methods
between all the superclass and its subclasses.

162

CHA P T E R 15
Extending superclass behavior

In the previous chapter we saw that inheritance allows the programmer to
factor out and reuse state and behavior. As such inheritance supports the
definition of class hierarchy where subclasses specialize behavior of their su-
perclass. We saw that the method look up starts in the class of the receiver
and goes up the inheritance chain. We explained that the method found by
the lookup is then executed on the receiver of the initial message. Finally we
showed that a subclass can specialize and override the behavior of its super-
class by defining locally a method with the same name than one method of
its superclass.

Now inheritance mechanism is even more powerful. With inheritance we
can extend locally the behavior of a superclass while reusing it. It is then
possible to override a method and in addition to invoke the behavior of the
superclass from within the overridden method.

We will continue to use and improve the example of file and directories.

15.1 Revisiting printOn:

When we look at the following printOn: methods defined in the classes
MFDirectory and MFFile we see that there is code repetition (as shown in
Figure 15-1).

Here is the repeated code snippet.

parent isNil
ifFalse: [parent printOn: aStream].

aStream << name

Here is the definition in the two classes:

163

Extending superclass behavior

printOn: aStream
size
search: aString

contents
File

astroboybabar

printOn: aStream
addElement: aFile
size
search: aString

files
Directory

oldcomicscomics

parent:
name:

name
parent

Element

printOn: aStream

parent isNil ifFalse: [
 parent printOn: aStream].

aStream << name.
aStream << '/'

printOn: aStream

parent isNil ifFalse: [
parent printOn: aStream].

aStream << name

Figure 15-1 MFFile and MFDirectory contain duplicated logic in printOn:.

MFDirectory >> printOn: aStream
parent isNil
ifFalse: [parent printOn: aStream].

aStream << name.
aStream << '/'

MFFile >> printOn: aStream
parent isNil
ifFalse: [parent printOn: aStream].

aStream << name

It means that if we define a new subclass we will have probably duplicate the
same expression.

15.2 Improving the situation

To improve the situation above we move up the definition of the MFFile
class because it also works for MFElement (as shown in Figure 15-2).

MFElement >> printOn: aStream
parent isNil
ifFalse: [parent printOn: aStream].

aStream << name

MFDirectory >> printOn: aStream
parent isNil
ifFalse: [parent printOn: aStream].

aStream << name.
aStream << '/'

164

15.2 Improving the situation

size
search: aString

contents
File

astroboybabar

printOn: aStream
addElement: aFile
size
search: aString

files
Directory

oldcomicscomics

parent:
name:
printOn: aStream

name
parent

Element

printOn: aStream

parent isNil ifFalse: [
 parent printOn: aStream].

aStream << name.
aStream << '/'

printOn: aStream

parent isNil ifFalse: [
parent printOn: aStream].

aStream << name

Figure 15-2 Improving the logic (but not fully).

It means that when we will add a new subclass, this class will at least have a
default definition for the printOn: method.

Now the duplication of logic is not addressed. The same code is duplicated
between the class MFElement and MFDirectory. What we see is that even if
the method printOn: of class MFDirectory is overriding the method of its
superclass, we would like to be able to invoke the method of the superclass
MFElement and to add the behavior aStream << '/'.

Why self does not work!

The following definition does not work because it introduces an endless loop.
Indeed, since the method lookup starts in the class of the receiver and self
represents the receiver, it will always find the same method and will not be
able to access the method of the superclass.

MFDirectory >> printOn: aStream
self printOn: aStream.
aStream << '/'

Let us make sure that you are fully with us. Imagine that we have the follow-
ing expression:

| p el1 el2 |
p := MFDirectory new name: 'comics'.
el1 := MFFile new name: 'babar'; contents: 'Babar et Celeste'.
p addElement: el1.
el2 := MFFile new name: 'astroboy'; contents: 'super cool robot'.
p addElement: el2.
String streamContents: [:s | p printOn: s]

165

Extending superclass behavior

size
search: aString

contents
File

astroboybabar

printOn: aStream
addElement: aFile
size
search: aString

files
Directory

oldcomicscomics

parent:
name:
printOn: aStream

name
parent

Element

printOn: aStream

 super printOn: aStream.
aStream << '/'

printOn: aStream

parent isNil ifFalse: [
parent printOn: aStream].

aStream << name

Figure 15-3 Using super to invoke the overridden method printOn:.

1. We get the message p printOn: s.

2. The method printOn: is looked up starting in the class of p, i.e., MFDi-
rectory.

3. The method is found and applied on p.

4. The message self printOn: aStream is about to be executed.

5. The receiver is self and represents p. The method printOn: aStream
is looked up in the class of the receiver, i.e., MFDirectory.

6. The same method is found in the class MFDirectory and the process
restarts at point 3.

In summary, we would like that while doing an override, to use the behavior
we are overriding. This is possible as we will see in the following section.

15.3 Extending superclass behavior using super

Let us implement the solution first and discuss it after. We redefine the method
printOn: of the class MFDirectory as follows and shown in Figure 15-3.

MFDirectory >> printOn: aStream
super printOn: aStream.
aStream << '/'

What we see is that the method printOn: does not contain anymore the du-
plicated expressions with the method printOn: of the superclass (MFElement).
Instead by using the special variable super the superclass method is invoked.
Let us look at it in detail.

166

15.3 Extending superclass behavior using super

• The method MFDirectory >> printOn: overrides the method MFEle-
ment: it means that during the lookup (activated because the message
printOn: has been sent to instances of MFDirectory or future sub-
classes), the method MFElement >> printOn: cannot be directly
found. Indeed when a message is sent to an object, the correspond-
ing method starts in the class of the receiver, therefore the method in
MFDirectory is found.

• Using the special variable super, the method lookup is different than
with self. When the expression super printOn: aStream is sent, the
lookup does not start anymore from the class of the receiver, it starts
from the superclass of the class containing the expression super printOn:,
i.e. MFElement, therefore the method of the superclass is found and
executed.

• Finally, super like self represents the receiver of the messages (for
example an instance of the class MFDirectory). Therefore the method
is found in the class MFDirectory and executed on the original object
that first received the message.

Let us make sure that you are fully with us. You can compare with the previ-
ous execution simulation.

| p el1 el2 |
p := MFDirectory new name: 'comics'.
el1 := MFFile new name: 'babar'; contents: 'Babar et Celeste'.
p addElement: el1.
el2 := MFFile new name: 'astroboy'; contents: 'super cool robot'.
p addElement: el2.
String streamContents: [:s | p printOn: s]

1. We get the message p printOn: s.

2. The method printOn: is looked up starting in the class of p, i.e., MFDi-
rectory.

3. The method is found and applied on p.

4. The message super printOn: aStream is about to be executed.

5. The receiver is super and represents p. The method printOn: aS-
tream is looked up in the superclass of the class containing the expres-
sion. The class containing the method is MFDirectory, its superclass is
then MFElement. The lookup starts from MFElement.

6. The method is found in the class MFElement in the class.

7. The message parent isNil is treated on the receiver p.

What we see is that using super, the programmer can extend the superclass
behavior and reuse by involving it.

167

Extending superclass behavior

size
search: aString

contents
File

astroboybabar

printOn: aStream
addElement: aFile
size
search: aString

files
Directory

oldcomicscomics

parent:
name:
size
printOn: aStream

name
parent

Element

 size
 ^ contents size + super size

size
 ^ name size size

 | sum |
 sum := 0.
 files do: [:each | sum := sum + each size].
 sum := sum + super size.
 sum := sum + 2.
 ^ sum

Figure 15-4 Using super to invoke the overridden method size.

Important super is the receiver of the message but when we send a
message to super the method lookup starts in the superclass of the class
containing the expression super.

15.4 Another example

Before explaining with a more theoritical scenario super semantics, we want
to show another example that illustrates that super expressions do not have
to be the first expression of a method. We can invoke the overridden method
at any place inside the overriding method.

The example could be more realistic but it shows that super expression does
not have to have to be the first expression of a method.

Let us check the two definitions of the two methods size in MFDirectory
and MFFile, we see that name size is used in both.

MFDirectory >> size
| sum |
sum := 0.
files do: [:each | sum := sum + each size].
sum := sum + name size.
sum := sum + 2.
^ sum

MFFile >> size
^ contents size + name size

What we can do is the following: define size in the superclass and invoke it
using super as shown in Figure 15-4. Here is then the resulting situation.

MFElement >> size
^ name size

168

15.5 Really understanding super

MFFile >> size
^ contents size + super size

MFDirectory >> size
| sum |
sum := 0.
files do: [:each | sum := sum + each size].
sum := sum + super size.
sum := sum + 2.
^ sum

What you see is that messages sent to super can be used anywhere inside in
the overriding method and their results can be used as any other messages.

15.5 Really understanding super

To convince you that self and super points to the same object you can use
the message == to verify it as follows:

MFFile >> funky
^ super == self

MFFile new funky
>>> true

Important super is a special variable: super (just like self) is the re-
ceiver of the message!

Now we take some time to look abstractly at what we presented so far. Imag-
ine a situation as illustrated by Figure 15-5.

A new bar
>>> ...
C new bar
>>> ...
D new bar
>>> ...

Solution

The solutions are the following ones:

A new bar
>>> 10
C new bar
>>> 20
D new bar
>>> 100

Let us examine the evaluation of the message aD bar:

169

Extending superclass behavior

foo
bar

A

bar
C

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50foo

D

bar
 ^ super bar + self foo

B

aD

Figure 15-5 Example to understand super.

1. aD’s class is D.

2. There is no method bar in D.

3. The method look up in C. The method bar is found.

4. The method bar of C is executed.

5. The message bar is sent to super.

6. super represents aD but the lookup starts in the superclass of the class
containing the expression super so it starts in B.

7. The method bar is not found in B, the lookup continues in A.

8. The method bar is found in A and it is executed on the receiver i.e., aD.

9. The message foo is sent to aD.

10. The method foo is found in D and executed. It returns 50.

11. Then to finish the execution of method bar in C, the rest of the expres-
sion + self foo should be executed.

12. Message self foo returns 50 too, so the result returns 100.

Important The difference between self and super is that when we
send a message to super the method lookup starts in the superclass of
the class containing the expression super.

15.6 Conclusion

In this chapter we saw that inheritance also supports the possibilities to
override a method and from this overriding method to invoke the over-
ridden one. This is done using the special variable super. super is the re-
ceiver of the message like self. The difference is that the method lookup is
changed when messages are sent to super. The method is looked up in the
superclass of the class containing the message sent to super.

170

CHA P T E R 16
A little expression interpreter

In this chapter you will build a small mathematical expression interpreter.
For example you will be able to build an expression such as (3 + 4) * 5 and
then ask the interpreter to compute its value. You will revisit tests, classes,
messages, methods and inheritance. You will also see an example of expres-
sion trees similar to the ones that are used to manipulate programs. For ex-
ample, compilers and code refactorings as offered in Pharo and many mod-
ern IDEs are doing such manipulation with trees representing code. In addi-
tion, in the volume two of this book, we will extend this example to present
the Visitor Design Pattern.

16.1 Starting with constant expression and a test

We start with constant expression. A constant expression is an expression
whose value is always the same, obviously.

Let us start by defining a test case class as follows:

TestCase subclass: #EConstantTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

We decided to define one test case class per expression class and this even if
at the beginning the classes will not contain many tests. It is easier to define
new tests and navigate them.

Let us write a first test making sure that when we get a value, sending it the
evaluatemessage returns its value.

171

A little expression interpreter

EConstantTest >> testEvaluate
self assert: (EConstant new value: 5) evaluate equals: 5

When you compile such a test method, the system should prompt you to get
a class EConstant defined. Let the system drive you. Since we need to store
the value of a constant expression, let us add an instance variable value to
the class definition.

At the end you should have the following definition for the class EConstant.

Object subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: ''
package: 'Expressions'

We define the method value: to set the value of the instance variable value.
It is simply a method taking one argument and storing it in the value in-
stance variable.

EConstant >> value: anInteger
value := anInteger

You should define the method evaluate: it should return the value of the
constant.

EConstant >> evaluate
... Your code ...

Your test should pass.

16.2 Negation

Now we can start to work on expression negation. Let us write a test and for
this define a new test case class named ENegationTest.

TestCase subclass: #ENegationTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

The test testEvaluate shows that a negation applies to an expression (here
a constant) and when we evalute we get the negated value of the constant.

ENegationTest >> testEvaluate
self assert: (ENegation new expression: (EConstant new value: 5))

evaluate equals: -5

Let us execute the test and let the system help us to define the class. A nega-
tion defines an instance variable to hold the expression that it negates.

172

16.3 Adding expression addition

Figure 16-1 A flat collection of classes (with a suspect duplication).

Object subclass: #ENegation
instanceVariableNames: 'expression'
classVariableNames: ''
package: 'Expressions'

We define a setter method to be able to set the expression under negation.

ENegation >> expression: anExpression
expression := anExpression

Now the evaluatemethod should request the evaluation of the expression
and negate it. To negate a number the Pharo library proposes the message
negated.

ENegation >> evaluate
... Your code ...

Following the same principle, we will add expression addition and multi-
plication. Then we will make the system a bit more easy to manipulate and
revisit its first design.

16.3 Adding expression addition

To be able to do more than constant and negation we will add two extra ex-
pressions: addition and multiplication and after we will discuss about our
approach and see how we can improve it.

To add an expression that supports addition, we start to define a test case
class and a simple test.

TestCase subclass: #EAdditionTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

173

A little expression interpreter

A simple test for addition is to make sure that we add correctly two con-
stants.

EAdditionTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: 8

You should define the class EAddition: it has two instance variables for the
two subexpressions it adds.

EExpression subclass: #EAddition
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

Define the two corresponding setter methods right: and left:.

Now you can define the evaluatemethod for addition.

EAddition >> evaluate
... Your code ...

To make sure that our implementation is correct we can also test that we can
add negated expressions. It is always good to add tests that cover different
scenario.

EAdditionTest >> testEvaluateWithNegation
| ep1 ep2 |
ep1 := ENegation new expression: (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: -2

16.4 Multiplication

We do the same for multiplication: create a test case class named EMulti-
plicationTest, a test, a new class EMultiplication, a couple of setter
methods and finally a new evaluatemethod. Let us do it fast and without
much comments.

TestCase subclass: #EMultiplicationTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

EMultiplicationTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).

174

16.5 Stepping back

anENegation

anEAddition

anEConstant

5

anEConstant

5

anEConstant

3

5

-5 + 3

expression

value

left

right
value

value

Figure 16-2 Expressions are composed of trees.

self assert: (EMultiplication new right: ep1; left: ep2) evaluate
equals: 15

Object subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EMultiplication >> right: anExpression
right := anExpression

EMultiplication >> left: anExpression
left := anExpression

EMultiplication >> evaluate
... Your code ...

16.5 Stepping back

It is interesting to look at what we built so far. We have a group of classes
whose instances can be combined to create complex expressions. Each ex-
pression is in fact a tree of subexpressions as shown in Figure 16-2. The fig-
ure shows two main trees: one for the constant expression 5 and one for the
expression -5 + 3. Note that the diagram represents the number 5 as an
object because in Pharo even small integers are objects in the same way the
instances of EConstant are objects.

175

A little expression interpreter

Object

value:
evaluate

value
Constant

left:
right:
evaluate

left
right

Addition

expression:
evaluate

expression
Negation

left:
right:
evaluate

left
right

Multiplication

evaluate
 ^ value

evaluate
 ^ expression evaluate negated

evaluate
 ^ right evaluate + left evaluate

evaluate
 ^ right evaluate * left evaluate

Figure 16-3 Evaluation: one message and multiple method implementations.

Messages and methods

The implementation of the evaluatemessage is worth discussing. What we
see is that different classes understand the same message but execute differ-
ent methods as shown in Figure 16-3.

Important A message represents an intent: it represents what should
be done. A method represents a specification of how something should be
executed.

What we see is that sending a message evaluate to an expression is making
a choice among the different implementations of the message. This point is
central to object-oriented programming.

Important Sending a message is making a choice among all the methods
with the same name.

About common superclass

So far we did not see the need to have an inheritance hierarchy because
there is not much to share or reuse. Now adding a common superclass would
be useful to convey to the reader of the code or a future extender of the li-
brary that such concepts are related and are different variations of expres-
sion.

Design corner: About addition and multiplication model

We could have just one class called for example BinaryOperation and it can
have an operator and this operator will be either the addition or multiplica-
tion. This solution can work and as usual having a working program does not
mean that its design is any good.

176

16.6 Negated as a message

In particular having a single class would force us to start to write conditional
based on the operator as follows

BinaryExpression >> evaluate
operator = #+
ifTrue: [left evaluate + right evaluate]
ifFalse: [left evaluate * right evaluate]

There are ways in Pharo to make such code more compact but we do not
want to use it at this stage. For the interested reader, look for the message
perform: that can execute a method based on its name.

This is annoying because the execution engine itself is made to select meth-
ods for us so we want to avoid to bypass it using explicit condition. In addi-
tion when we will add power, division, subtraction we will have to have more
cases in our condition making the code less readable and more fragile.

As we will see as a general message in this book, sending a message is mak-
ing a choice between different implementations. Now to be able to choose
we should have different implementations and this implies having different
classes.

Important Classes represent choices whose methods can be selected in
reaction to a message. Having many little classes is better than few large
ones.

What we could do is to introduce a common superclass between EAddition
and EMultiplication but keep the two subclasses. We will probably do it in
the future

16.6 Negated as a message

Negating an expression is expressed in a verbose way. We have to create ex-
plicitly each time an instance of the class ENegation as shown in the follow-
ing snippet.

ENegation new expression: (EConstant new value: 5)

We propose to define a message negated on the expressions themselves that
will create such instance of ENegation. With this new message, the previous
expression can be reduced too.

(EConstant new value: 5) negated

negated message for constants

Let us write a test to make sure that we capture well what we want to get.

177

A little expression interpreter

EConstantTest >> testNegated
self assert: (EConstant new value: 6) negated evaluate equals: -6

And now we can simply implement it as follows:

EConstant >> negated
^ ENegation new expression: self

negated message for negations

ENegationTest >> testNegationNegated
self assert: (EConstant new value: 6) negated negated evaluate

equals: 6

ENegation >> negated
^ ENegation new expression: self

This definition is not the best we can do since in general it is a bad practice
to hardcode the class usage inside the class. A better definition would be

ENegation >> negated
^ self class new expression: self

But for now we keep the first one for the sake of simplicity

negated message for additions

We proceed similarly for additions.

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

EAddition >> negated
Your code

negated message for multiplications

We proceed similarly for multiplications.

EMultiplicationTest >> testEvaluateNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new right: ep1; left: ep2) negated

evaluate equals: -15

EMultiplication >> negated
... Your code ...

178

16.7 Annoying repetition

Object

value:
evaluate
negated

value
Constant

left:
right:
evaluate
negated

left
right

Addition

expression:
evaluate
negated

expression
Negation

left:
right:
evaluate
negated

left
right

Multiplication

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

Figure 16-4 Code repetition is a bad smell.

Now all your tests should pass. And it is a good moment to save your pack-
age.

16.7 Annoying repetition

Let us step back and look at what we have. We have a working situation but
again object-oriented design is to bring the code to a better level.

Similarly to the situation of the evaluatemessage and methods we see that
the functionality of negated is distributed over different classes. Now what
is annoying is that we repeat the exact same code over and over and this is
not good (see Figure 16-4). This is not good because if tomorrow we want to
change the behavior of negation we will have to change it four times while in
fact one time should be enough.

What are the solutions?

• We could define another class Negator that would do the job and each
current classes would delegate to it. But it does not really solve our
problem since we will have to duplicate all the message sends to call
Negator instances.

• If we define the method negated in the superclass (Object) we only
need one definition and it will work. Indeed, when we send the mes-
sage negated to an instance of EConstant or EAddition the system
will not find it locally but in the superclass Object. So no need to de-
fine it four times but only one in class Object. This solution is nice
because it reduces the number of similar definitions of the method
negated but it is not good because even if in Pharo we can add meth-
ods to the class Object this is not a good practice. Object is a class

179

A little expression interpreter

Figure 16-5 Introducing a common superclass.

shared by the entire system so we should take care not to add behavior
only making sense for a single application.

• The solution is to introduce a new superclass between our classes and
the class Object. It will have the same property than the solution with
Object but without polluting it (see Figure 16-5). This is what we do in
the next section.

16.8 Introducing Expression class

Let us introduce a new class to obtain the situation depicted by Figure 16-5.
We can simply do it by adding a new class:

Object subclass: #EExpression
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

and changing all the previous definitions to inherit from EExpression in-
stead of Object. For example the class EConstant is then defined as follows.

EExpression subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: ''
package: 'Expressions'

We can also use for the first transformation the class refactoring Insert super-
class. Refactorings are code transformations that do not change the behavior
of a program. You can find it under the refactorings list when you bring the
menu on the classes. Now it is only useful for the first changes.

180

16.9 Class creation messages

Once the classes EConstant, ENegation, EAddition, and EMultiplication
are subclasses of EEXpression, we should focus on the method negated.
Now the method refactoring Push up will really help us.

• Select the method negated in one of the classes

• Select the refactoring Push up

The system will define the method negated in the superclass (EExpression)
and remove all the negated methods in the classes. Now we obtain the situa-
tion described in Figure 16-5. It is a good moment to run all your tests again.
They should all pass.

Now you could think that we can introduce a new class named Arithmetic-
Expression as a superclass of EAddition and EMultiplication. Indeed this
is something that we could do to factor out common structure and behav-
ior between the two classes. We will do it later because this is basically just a
repetition of what we have done.

16.9 Class creation messages

Until now we always sent the message new to a class followed by a setter
method as shown below.

EConstant new value: 5

We would like to take the opportunity to show that we can define simple
classmethods to improve the class instance creation interface. In this ex-
ample it is simple and the benefits are not that important but we think that
this is a nice example. With this in mind the previous example can now be
written as follows:

EConstant value: 5

Notice the important difference that in the first case the message is sent to
the newly created instance while in the second case it is sent to the class it-
self.

To define a class method is the same as to define an instance method (as we
did until now). The only difference is that using the code browser you should
click on the classSide button to indicate that you are defining a method that
should be executed in response to a message sent to a class itself.

Better instance creation for constants

Define the following method on the class EConstant. Notice the definition
now use EConstant class and not just EConstant to stress that we are
defining the class method.

181

A little expression interpreter

EConstant class >> value: anInteger
^ self new value: anInteger

Now define a new test to make sure that our method works correctly.

EConstantTest >> testCreationWithClassCreationMessage
self assert: (EConstant value: 5) evaluate equals: 5

Better instance creation for negations

We do the same for the class ENegation.

ENegation class >> expression: anExpression
... Your code ...

We write of course a new test as follows:

ENegationTest >> testEvaluateWithClassCreationMessage
self assert: (ENegation expression: (EConstant value: 5)) evaluate

equals: -5

Better instance creation for additions

For the addition we add a class method named left:right: taking two ar-
guments

EAddition class >> left: anInteger right: anInteger2
^ self new left: anInteger ; right: anInteger2

Of course, since we are addicted to tests, we add a new test.

EEAdditionTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition left: ep1 right: ep2) evaluate equals: 8

Better instance creation for multiplications

We let you do the same for the multiplication.

EMultiplication class >> left: anExp right: anExp2
... Your code ...

And another test to check that everything is ok.

EMultiplicationTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new left: ep1; right: ep2) evaluate

equals: 15

182

16.10 Introducing examples as class messages

Run your tests! They should all pass.

16.10 Introducing examples as class messages

As you saw when writing the tests, it is quite annoying to repeat all the time
the expressions to get a given tree. This is especially the case in the tests
related to addition and multiplication as the one below:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

One simple solution is to define some class methods returning typical in-
stances of their classes. To define a class method remember that you should
click the class side button.

EConstant class >> constant5
^ self new value: 5

EConstant class >> constant3
^ self new value: 3

This way we can define the test as follows:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

The tools in Pharo support such a practice. If we tag a class method with the
special annotation <sampleInstance> the browser will show a little icon
on the side and when we click on it, it will open an inspector on the new in-
stance.

EConstant class >> constant3
<sampleInstance>
^ self new value: 3

using the same idea we defined the following class methods to return some
examples of our classes.

EAddition class >> fivePlusThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
^ self new left: ep1 ; right: ep2

183

A little expression interpreter

EMultiplication class >> fiveTimesThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
^ EMultiplication new left: ep1 ; right: ep2

What is nice with such examples is that

• they help documenting the class by providing objects that we can di-
rectly use,

• they support the creation of tests by providing objects that can serve
as input for tests,

• they simplify the writing of tests.

So think to use them.

16.11 Printing

It is quite annoying that we cannot really see an expression when we inspect
it. We would like to get something better than 'aEConstant' and 'anEAd-
dition' when we debug our programs. To display such information the de-
bugger and inspector send to the objects the message printString which by
default just prefix the name of the class with ’an’ or ’a’.

Let us change this situation. For this, we will specialize the method printOn:
aStream. The message printOn: is called on the object when a program or
the system send to the object the message printString. From that perspec-
tive printOn: is a system customisation point that developers can take ad-
vantage to enhance their programming experience.

Note that we do not redefine the method printString because it is more
complex and printString is reused for all the objects in the system. We
just have to implement the part that is specific to a given class. In object-
oriented design jargon, printString is a template method in the sense that
it sets up a context which is shared by other objects and it hosts hook meth-
ods which are program customisation points. printOn: is a hook method.
The term hook comes from the fact that code of subclasses are invoked in the
hook place (see Figure 16-6).

The default definition of the method printOn: as defined on the class Ob-
ject is the following: it grabs the class name and checks if it starts with a
vowel or not and write to the stream the ’a/an class’. This is why by default
we got 'anEConstant' when we printed a constant expression.

184

16.11 Printing

printString
printOn:

Object

value:
evaluate
printOn:

value
Constant

left:
right:
evaluate
printOn:

left
right

Addition

expression:
evaluate
printOn:

expression
Negation

left:
right:
evaluate
printOn:

left
right

Multiplication

negated

Expression

printString

 self printOn: aStream

printOn: aStream

 | title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

printOn: aStream

 aStream nextPutAll: value printString

printOn: aStream

 aStream nextPutAll: '- '.
aStream nextPutAll: expression printString

printOn: aStream

 ...

printOn: aStream

 ...

Figure 16-6 printOn: and printString a ”hooks and template” in action.

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."
| title |
title := self class name.
aStream
nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a
']);
nextPutAll: title

A word about streams

A stream is basically a container for a sequence of objects. Once we get a
stream we can either read from it or write to it. In our case we will write
to the stream. Since the stream passed to printOn: is a stream expecting
characters we will add characters or strings (sequence of characters) to it.
We will use the messages: nextPut: aCharacter and nextPutAll: aS-
tring. They add to the stream the arguments at the next position and fol-
lowing. We will guide you and it is simple. You can find more information
on the chapter about Stream in the book: Pharo by Example available at
http://books.pharo.org

185

http://books.pharo.org

A little expression interpreter

Printing constant

Let us start with a test. Here we check that a constant is printed as its value.

EConstantTest >> testPrinting
self assert: (EConstant value: 5) printString equals: '5'

The implementation is then simple. We just need to put the value converted
as a string to the stream.

EConstant >> printOn: aStream
aStream nextPutAll: value printString

Printing negation

For a negation we should first put a ’-’ and then recurvisely call the print-
ing process on the negated expression. Remember that sending the message
printString to an expression should return its string representation. At
least until now it will work for constants.

(EConstant value: 6) printString
>>> '6'

Here is a possible definition

ENegation >> printOn: aStream
aStream nextPutAll: '- '
aStream nextPutAll: expression printString

By the way since all the messages are sent to the same object, this method
can be rewritten as:

ENegation >> printOn: aStream
aStream
nextPutAll: '- ';
nextPutAll: expression printString

We can also define it as follows:

ENegation >> printOn: aStream
aStream nextPutAll: '- '.
expression printOn: aStream

The difference between the first solution and the alternate implementation
is the following: In the solution using printString, the system creates two
streams: one for each invocation of the message printString. One for print-
ing the expression and one for printing the negation. Once the first stream
is used the message printString converts the stream contents into a string
and this new string is put inside the second stream which at the end is con-
verted again as a string. So the first solution is not really efficient. With the
second solution, only one stream is created and each of the method just
put the needed string elements inside. At the end of the process, the single
printStringmessage converts it into a string.

186

16.12 Revisiting negated message for Negation

Printing addition

Now let us write yet another test for addition printing.

EAdditionTest >> testPrinting
self assert: (EAddition fivePlusThree) printString equals: '(5 +

3)'.
self assert: (EAddition fivePlusThree) negated printString equals:

'- (5 + 3)'

Printing an addition is: put an open parenthesis, print the left expression,
put ’ + ’, print the right expression and put a closing parenthesis in the stream.

EAddition >> printOn: aStream
... Your code ...

Printing multiplication

And now we do the same for multiplication.

EMultiplicationTest >> testPrinting
self assert: (EMultiplication fiveTimesThree) negated printString

equals: '- (5 * 3)'

EMultiplication >> printOn: aStream
... Your code ...

16.12 Revisiting negated message for Negation

Now we can go back on negating an expression. Our implementation is not
nice even if we can negate any expression and get the correct value. If you
look at it carefully negating a negation could be better. Printing a negated
negation illustrates well the problem: we get two minuses instead of none.

(EConstant value: 11) negated
>> '- 11'

(EConstant value: 11) negated negated
>> '- - 11'

A solution could be to change the printOn: definition and to check if the ex-
pression that is negated is a negation and in such case to not emit the minus.
Let us say it now, this solution is not nice because we do not want to write
code that depends on explicitly checking if an object is of a given class. Re-
member we want to send message and let the object do some actions.

A good solution is to specialize the message negated so that when it is sent
to a negation it does not create a new negation that points to the receiver but
instead returns the expression itself, otherwise the method implemented in

187

A little expression interpreter

EExpression will be executed. This way the trees created by a negatedmes-
sage can never have negated negation but the arithmetic values obtained are
correct. Let us implement this solution, we just need to implement a differ-
ent version of the method negated for ENegation.

Let us write a test! Since evaluating a single expression or a double negated
one gives the same results, we need to define a structural test. This is what
we do with the expression exp negated class = ENegation below.

NegationTest >> testNegatedStructureIsCorrect
| exp |
exp := EConstant value: 11.
self assert: exp negated class = ENegation.
self assert: exp negated negated equals: exp.

Now you should be able to implement the negatedmessage on ENegation.

ENegation >> negated
... Your code ...

Understanding method override

When we send a message to an object, the system looks for the correspond-
ing method in the class of the receiver then if it is not defined there, the
lookup continues in the superclass of the previous class.

By adding a method in the class ENegation, we created the situation shown
in Figure 16-7. We said that the message negated is overridden in ENega-
tion because for instances of ENegation it hides the method defined in the
superclass EExpression.

It works the following:

• When we send the message negated to a constant, the message is not
found in the class EConstant and then it is looked up in the class EEx-
pression and it is found there and applied to the receiver (the in-
stance of EConstant).

• When we send the message negated to a negation, the message is
found in the class ENegation and executed on the negation expression.

16.13 Introducing BinaryExpression class

Now we will take a moment to improve our first design. We will factor out
the behavior of EAddition and EMultiplication.

EExpression subclass: #EBinaryExpression
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

188

16.13 Introducing BinaryExpression class

Figure 16-7 The message negated is overridden in the class ENegation.

EBinaryExpression subclass: #EAddition
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

Now we can use again a refactoring to pull up the instance variables left
and right, as well as the methods left: and right:.

Select the class EMuplication, bring the menu and select in the Refactoring
menu the instance variables refactoring Push Up. Then select the instance
variables.

Now you should get the following class definitions, where the instance vari-
ables are defined in the new class and removed from the two subclasses.

EExpression subclass: #EBinaryExpression
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EAddition
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

189

A little expression interpreter

Figure 16-8 Factoring instance variables.

EBinaryExpression subclass: #EMultiplication
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

We should get a situation similar to the one of Figure 16-8. All your tests
should still pass.

Now we can move the same way the methods. Select the method left: and
apply the refactoring Pull Up Method. Do the same for the method right:.

Creating a template and hook method

Now we can look at the methods printOn: of additions and multiplications.
They are really similar: Just the operator is changing. Now we cannot simply
copy one of the definitions because it will not work for the other. But what
we can do is to apply the same design point that implemented for printString
and printOn:: we can create a template and hooks that will be specialized in
the subclasses.

We will use the method printOn: as a template with a hook redefined in
each subclass.

Let define the method printOn: in EBinaryExpression and remove the
other ones from the two classes EAddition and EMultiplication.

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: ' + '.

190

16.14 What did we learn

Figure 16-9 Factoring instance variables and behavior.

right printOn: aStream.
aStream nextPutAll: ')'

Then you can do it manually or use the Extract Method Refactoring: This refac-
toring creates a new method from a part of an existing method and sends a
message to the new created method: select the ’ + ’ inside the method pane
and bring the menu and select the Extract Method refactoring, and when
prompt give the name operatorString.

Here is the result you should get:

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: self operatorString.
right printOn: aStream.
aStream nextPutAll: ')'

EBinaryExpression >> operatorString
^ ' + '

Now we can just redefine this method in the EMultiplication class to re-
turn the adequate string.

EMultiplication >> operatorString
^ ' * '

16.14 What did we learn

The introduction of the class EBinaryExpression is a rich experience in
terms of lessons that we can learn.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention that their application does not change the behav-

191

A little expression interpreter

ior of programs. As we saw refactorings are powerful operations that
really help doing complex operations in a few action.

• We saw that the introduction of a new superclass and moving instance
variables or method to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.

• While the method printOn: is by itself a hook for the method printString,
it can also play the role of a template method. The method opera-
torString reuses the context created by the printOn: method which
acts as a template method. In fact each time we do a self send we cre-
ate a hook method that subclasses can specialize.

16.15 About hook methods

When we introduced EBinaryExpression we defined the method opera-
torString as follows:

EBinaryExpression >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

And you may wonder if it was worth to create a new method in the super-
class and so that such one subclass redefines it.

Creating hooks is always good

First creating a hook is also a good idea. Because you rarely know how your
system will be extended in the future. On this little example, we suggest you
to add raising to power, division and this can be done with one class and two
methods per new operator.

Avoid not documenting hooks

Second we could have just defined one method operatorString in each sub-
class and no method in the superclass EBinaryExpression. It would have
worked because EBinaryExpression is not meant to have direct instances.
Therefore there is no risk that a printOn: message is sent to one of its in-
stance and cause an error because no method operatorString is found.

The code would have looked like the following:

EAddition >> operatorString
^ ' + '

192

16.16 Variables

value:
evaluate
printOn:

value
Constant

evaluate
operatorString

Additionexpression:
evaluate
printOn:

expression
Negation

evaluate
operatorString

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left
right

Binary
Expression

operatorString

 ^ self subclassResponsibility

operatorString

 ^ ' + '

operatorString

 ^ ' * '

Figure 16-10 Better design: Declaring an abstract method as a way to document

a hook method.

EMultiplication >> operatorString
^ ' * '

Now such a design is not really good because as potential extenders, develop-
ers will have to guess reading the subclass definitions that they should also
define a method operatorString. A better solution in that case is to define
an abstract method in the superclass as follows:

EBinaryExpression >> operatorString
^ self subclassResponsibility

Using the message subclassResponsibility declares that a method is ab-
stract and does nothing except forcing its redefinition: subclasses should
redefine it explicitly. Using such an approach we get the final situation rep-
resented in Figure 16-10.

In the solution presented before (section 16.13) we decided to go for the sim-
plest solution and it was to use one of the default value (’ + ’) as a default defi-
nition for the hook in the superclass EExpression. It was not a good solution
and we did it on purpose to be able to have this discussion. It was not a good
solution since it was using a specific subclass. It is better to define a default
value for a hook in the superclass when this default value makes sense in the
class itself.

Note that we could also define evaluate as an abstract method in EExpres-
sion to indicate clearly that each subclass should define an evaluate.

16.16 Variables

Up until now our mathematical expressions are rather limited. We only ma-
nipulate constant-based expressions. What we would like is to be able to ma-

193

A little expression interpreter

nipulate variables too. Here is a simple test to show what we mean: we de-
fine a variable named 'x' and then we can later specify that 'x' should take
a given value.

Let us create a new test class named EVariableTest and define a first test
testValueOfx.

EVariableTest >> testValueOfx
self assert: ((EVariable new id: #x) evaluateWith: {#x -> 10}

asDictionary) equals: 10.

Some technical points

Let us explain a bit what we are doing with the expression {#x -> 10} as-
Dictionary. We should be able to specify that a given variable name is as-
sociated with a given value. For this we create a dictionary: a dictionary is a
data structure for storing keys and their associated value. Here a key is the
variable and the value its associated value. Let us present some details first.

Dictionaries

A dictionary is a data structure containing pairs (key value) and we can ac-
cess the value of a given key. It can use any object as key and any object as
values. Here we simply use a symbol #x since symbols are unique within the
system and as such we are sure that we cannot have two keys looking the
same but having different values.

| d |
d := Dictionary new
at: #x put: 33;
at: #y put: 52;
at: #z put: 98.

d at: y
>>> 52

The previous dictionary can be easily expressed more compactly using {#x
-> 33 . #y -> 52 . #z -> 98} asDictionary.

{#x -> 33 . #y -> 52 . #z -> 98} asDictionary at: #y
>>> 52

Dynamic Arrays

The expression { } creates a dynamic array. Dynamic arrays execute their
expressions and store the resulting values.

{2 + 3 . 6 - 2 . 7-2 }
>>> ==#(5 4 5)==

194

16.16 Variables

Pairs

The expression #x -> 10 creates a pair with a key and a value.

| p |
p := #x -> 10.
p key
>>> #x
p value
>>> 10

Back to variable expressions

If we go a step further, we want to be able to build more complex expressions
where instead of having constants we can manipulate variables. This way we
will be able to build more advanced behavior such as expression derivations.

EExpression subclass: #EVariable
instanceVariableNames: 'id'
classVariableNames: ''
package: 'Expressions'

EVariable >> id: aSymbol
id := aSymbol

EVariable >> printOn: aStream
aStream nexPutAll: id asString

What we see is that we need to be able to pass bindings (a binding is a pair
key, value) when evaluating a variable. The value of a variable is the value of
the binding whose key is the name of the variable.

EVariable >> evaluateWith: aBindingDictionary
^ aBindingDictionary at: id

Your tests should all pass at this point.

For more complex expressions (the ones that interest us) here are two tests.

EVariableTest >> testValueOfxInNegation
self assert: ((EVariable new id: #x) negated
evaluateWith: {#x -> 10} asDictionary) equals: -10

What the second test shows is that we can have an expression and given a
different set of bindings the value of the expression will differ.

EVariableTest >> testEvaluateXplusY
| ep1 ep2 add |
ep1 := EVariable new id: #x.
ep2 := EVariable new id: #y.
add := EAddition left: ep1 right: ep2.

self assert: (add evaluateWith: { #x -> 10 . #y -> 2 }

195

A little expression interpreter

asDictionary) equals: 12.
self assert: (add evaluateWith: { #x -> 10 . #y -> 12 }

asDictionary) equals: 22

Non working approaches

A non working solution would be to add the following method to EExpres-
sion
EEXpression >> evaluateWith: aDictionary
^ self evaluate

However it does not work for at least the following reasons:

• It does not use its argument. It only works for trees composed out ex-
clusively of constant.

• When we send a message evaluateWith: to an addition, this message
is then turned into an evaluatemessage sent to its subexpression
and such subexpression do not get an evaluateWith: message but
an evaluate.

Alternatively we could add the binding to the variable itself and only provide
an evaluatemessage as follows:

(EVariable new id: #x) bindings: { #x -> 10 . #y -> 2 } asDictionary

But it fully defeats the purpose of what a variable is. We should be able to
give different values to a variable embedded inside a complex expression.

The solution: adding evaluateWith:

We should transform all the implementations and message sends from eval-
uate to evaluateWith: Since this is a tedious task we will use the method
refactoring Add Parameter. Since a refactoring applies itself on the complete
system, we should be a bit cautious because other Pharo classes implement
methods named evaluate and we do not want to impact them.

So here are the steps that we should follow.

• Select the Expression package

• Choose Browse Scoped (it brings a browser with only your package)

• Using this browser, select a method evaluate

• Select the Add Parameter refactoring: type evaluateWith: as method
selector and proceed when prompted for a default value Dictionary
new. This last expression is needed because the engine will rewrite all
the messages evaluate but evaluateWith: Dictionary new.

• The system is performing many changes. Check that they only touch
your classes and accept them all.

196

16.17 Conclusion

A test like the following one:

EConstant >> testEvaluate
self assert: (EConstant constant5) evaluate equals: 5

is transformed as follows:

EConstant >> testEvaluate
self assert: ((EConstant constant5) evaluateWith: Dictionary new)

equals: 5

Your tests should nearly all pass except the ones on variables. Why do they
fail? Because the refactoring transformed message sends evaluate but eval-
uateWith: Dictionary new and this even in methods evaluate.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: Dictionary new) + (left evaluateWith:

Dictionary new)

This method should be transformed as follows: We should pass the binding
to the argument of the evaluateWith: recursive calls.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: anObject) + (left evaluateWith: anObject)

Do the same for the multiplications.

ENegation >> evaluateWith: anObject
^ (expression evaluateWith: anObject) negated

16.17 Conclusion

This little exercise was full of learning potential. Here is a little summary of
what we explained and we hope you understood.

• A message specifies an intent while a method is a named list of execu-
tion. We often have one message and a list of methods with the same
name.

• Sending a message is finding the method corresponding to the mes-
sage selector: this selection is based on the class of the object receiving
the message. When we look for a method we start in the class of the
receiver and go up the inheritance link.

• Tests are a really nice way to specify what we want to achieve and then
to verify after each change that we did not break something. Tests do
not prevent bugs but they help us building confidence in the changes
we do by identifying fast errors.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention that their application does not change the behav-

197

A little expression interpreter

ior of program. As we saw refactorings are powerful operations that
really help doing complex operations in a few actions.

• We saw that the introduction of a new superclass and moving instance
variables or method to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.

• Each time we send a message, we create a potential place (a hook) for
subclasses to get their code definition used in place of the superclass’s
one.

198

Part V

Little projects

CHA P T E R 17
A simple network simulator

In this chapter, we develop a simulator for a computer network, step by step
from scratch. The program starts with a simplistic model of a computer net-
work, made of objects that represent different parts of a local network such
as packets, nodes, workstations, routers and hubs.

At first, we will just simulate the different steps of packet delivery and have
fun with the system. In a second step we will extend the basic functionali-
ties by adding extensions such as a hub and different packet routing strate-
gies. Doing so, we will revisit many object-oriented concepts such as poly-
morphism, encapsulation, hooks and templates. Finally this system could be
refined to become an experiment platform to explore and understand dis-
tributed algorithms.

Basic definitions and a starting point

We need to establish the basic model; what does the description above tell
us? A network is a number of interconnected nodes, which exchange data
packets. We will therefore probably need to model the nodes, the connection
links, and the packets:

• Nodes have addresses, can send and receive packets;

• Links connect two nodes together, and transmit packets between them;

• A packet transports a payload and has the address of the node to which
it should be delivered; if we want nodes to be able to answer (after re-
ception), packets should also have the address of the node which origi-
nally sent it.

201

A simple network simulator

mac

pc 1

hub
pc 2

impr

impr2

mac2

pung

Figure 17-1 Two little networks composed of nodes and sending packets over

links.

17.1 Packets are simple value objects

Packets seem to be the simplest objects in our model: we need to create
them, and ask them about the data they contain, and that’s about it. Once
created, a packet object is merely a passive data structure: it will not change
its data, knows nothing of the surrounding network, and has no behavior
that we can really talk about.

Let’s start by defining a test class and a first test sketching what creating and
looking at packets would look like:

TestCase subclass: #KANetworkEntitiesTest
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Tests'

KANetworkEntitiesTest >> testPacketCreation
| src dest payload packet |
src := Object new.
dest := Object new.
payload := Object new.

packet := KANetworkPacket from: src to: dest payload: payload.

self assert: packet sourceAddress equals: src.
self assert: packet destinationAddress equals: dest.
self assert: packet payload equals: payload

By writing this unit test, we described how we think packets should be cre-
ated, using a from:to:payload: constructor message, and how it should be

202

17.2 Nodes are known by their address

accessed, using three messages sourceAddress, destinationAddress, and
payload. Since we have not yet decided what addresses and payloads should
look like, we just pass arbitrary objects as parameters; all that matters is that
when we ask the packet, it returns the correct object back.

Of course, if we now compile and run this test method, it will fail, because
the class KANetworkPacket has not been created yet, nor any of the four
above messages. You can either execute and let the system prompt you when
needed or we can define the class:

Object subclass: #KANetworkPacket
instanceVariableNames: 'sourceAddress destinationAddress payload'
classVariableNames: ''
category: 'NetworkSimulator-Core'

The class-side constructor method creates an instance, which it returns after
sending it an initialization message; nothing original as far as constructors
go:

KANetworkPacket class >> from: sourceAddress to: destinationAddress
payload: anObject
... Your code ...

That constructor will need to pass the initialization parameters to the new
instance. It’s preferable to define a single initialization method that takes
all needed parameters at once, since it is only supposed to be called when
creating packets and should not be confused with a setter:

KANetworkPacket >> initializeSource: source destination: destination
payload: anObject
... Your code ...

Once a packet is created, all we need to do with it is to obtain its payload, or
the addresses of its source or destination nodes. Define the following getters:

KANetworkPacket >> sourceAddress
... Your code ...

KANetworkPacket >> destinationAddress
... Your code ...

KANetworkPacket >> payload
... Your code ...

Now our test should be running and passing. That’s enough for our admit-
tedly simplistic model of packets; we completely ignore the layers of the OSI
model, but it could be an interesting exercise to model them more precisely.

17.2 Nodes are known by their address

The first obvious thing we can say about a network node is that if we want
to be able to send packets to it, then it should have an address; let’s translate

203

A simple network simulator

that into a test:

KANetworkEntitiesTest >> testNodeCreation
| address node |
address := Object new.
node := KANetworkNode withAddress: address.
self assert: node address equals: address

Like before, to run this test to completion, we will have to define the KANet-
workNode class:

Object subclass: #KANetworkNode
instanceVariableNames: 'address'
classVariableNames: ''
category: 'NetworkSimulator-Core'

Then a class-side constructor method taking the address of the new node as
parameter:

KANetworkNode class >> withAddress: aNetworkAddress
^ self new

initializeAddress: aNetworkAddress;
yourself

The constructor relies on an instance-side initialization method, and the test
asserts that the address accessor works; define them:

KANetworkNode >> initializeAddress: aNetworkAddress
... Your code ...

KANetworkNode >> address
... Your code ...

Again, our simplistic tests should now pass.

17.3 Links are one-way connections between nodes

After nodes and packets, what about looking at links? In the real world, net-
work cables are bidirectional, but that’s because they have wires going both
ways. Here, we’re going to keep it simple and define links as simple one-way
connections; to make a two-way connection, we will just use two links, one in
each direction.

However, creating links that know their source and destination nodes is not
sufficient: nodes also need to know about their outgoing links, otherwise they
cannot send packets. Let us write a test to cover this.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.

204

17.3 Links are one-way connections between nodes

link attach.

self assert: (node1 hasLinkTo: node2)

This test creates two nodes and a link; after telling the link to attach itself, we
check that it did so: the source node should confirm that it has an outgoing
link to the destination node. Note that the constructor could have registered
the link with node1, but we opted for a separate message attach instead,
because it’s bad form to have a constructor change other objets; this way we
can build links between arbitrary nodes and still have control of when the
connection really becomes part of the network model. For symmetry, we
could have specified that node2 has an incoming link from node1, but that
ends up not being necessary, so we leave that out for now.

Again, we need to define the class of links:

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination'
classVariableNames: ''
category: 'NetworkSimulator-Core'

A constructor that passes the two required parameters to an instance-side
initialization message:

KANetworkLink class >> from: sourceNode to: destinationNode
^ self new

initializeFrom: sourceNode to: destinationNode

As well as the initialization method and accessors:

KANetworkLink >> initializeFrom: sourceNode to: destinationNode
... Your code ...

KANetworkLink >> source
... Your code ...

KANetworkLink >> destination
... Your code ...

The attachmethod of a link should not (and cannot) directly modify the
source node, so it must delegate to it instead.

KANetworkLink >> attach
source attach: self

This is an example of separation of concerns: the link knows which node has
to do what, but only the node itself knows precisely how to do that. Here, if a
node knows about all its outgoing links, it means it has a collection of those,
and attaching a link adds it to that collection:

KANetworkNode >> attach: anOutgoingLink
outgoingLinks add: anOutgoingLink

205

A simple network simulator

withAddress:
attach: aLink
hasLinkTo: aNode

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach

source
destination

NetworkLink

Figure 17-2 Current API of our three main classes.

For this method to compile correctly, we will need to extend KANetworkNode
with the new instance variable outgoingLinks, and with the corresponding
initialization code:

KANetworkNode >> initialize
outgoingLinks := Set new.

And finally the unit test relied on a predicate method to define in KANetwor-
kNode:
KANetworkNode >> hasLinkTo: anotherNode

... Your code ...

The method hasLinkTo: should verify that there is at least one outgoing
links whose destination is the node passed as argument. We suggest to have
a look at the iterator anySatisfy: to express this logic.

Again, all the tests should now pass.

17.4 Making our objects more understandable

When programming we often make mistakes and it is important to help de-
veloper to address them. Le us put a breakpoint and try to understand the
objects.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.
link attach.
self halt.
self assert: (node1 hasLinkTo: node2)

Running the test will open a debugger as the one shown in Figure 17-3. We
get object but their textual representation is too generic to really help us.

The method printOn: is responsible to the printing of the object represen-
tation. We will then redefine this method for the different objects we have.

KANetworkNode >> printOn: aStream
aStream nextPutAll: 'Node ('.
aStream nextPutAll: address , ')'

206

17.5 Simulating the steps of packet delivery

Figure 17-3 Navigating specific objects having a generic presentation.

KANetworkLink >> printOn: aStream
aStream nextPutAll: 'Link'.
source

ifNotNil: [aStream
nextPutAll: ' ';
nextPutAll: source address].

destination
ifNotNil: [aStream

nextPutAll: ' -> ';
nextPutAll: destination address]

Now if we rerun the test we obtain a better user experience as shown in Fig-
ure 17-4: we can see the address of a node and the source and destination of
a link.

17.5 Simulating the steps of packet delivery

The next big feature is that nodes should be able to send and receive packets,
and links to transmit them.

KANetworkEntitiesTest >> testSendAndTransmit
| srcNode destNode link packet |
srcNode := KANetworkNode withAddress: #src.
destNode := KANetworkNode withAddress: #dest.

207

A simple network simulator

Figure 17-4 Navigating objects offering a customized presentation.

link := (KANetworkLink from: srcNode to: destNode) attach;
yourself.
packet := KANetworkPacket from: #address to: #dest payload:
#payload.

srcNode send: packet via: link.
self assert: (link isTransmitting: packet).
self deny: (destNode hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (destNode hasReceived: packet)

We create and setup two nodes, a link between them, and a packet. Now, to
control which packets get delivered in which order, we specify that it hap-
pens in separate, controlled steps. This will allow us to model packet delivery
precisely, to simulate latency, out-of-order reception, etc.:

• First, we tell the node to send the packet using the message send:via:.
At that point, the packet should be passed to the link for transmission,
but not completely delivered yet.

• Then, we tell the link to actually transmit the packet along using the
message transmit:, and thus the packet should be received by the
destination node.

208

17.6 Sending a packet

17.6 Sending a packet

To send a packet, the node emits it on the link:

KANetworkNode >> send: aPacket via: aLink
aLink emit: aPacket

For the simulation to be realistic, we do not want the packet to be delivered
right away; instead, emitting a packet really just stores it in the link, until
the user elects this packet to proceed using the transmit: message. Storing
packets requires adding an instance variable to KANetworkLink, as well as
specifying how this instance variable should be initialized.

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination packetsToTransmit'
classVariableNames: ''
category: 'NetworkSimulator-Core'

KANetworkLink >> initialize
packetsToTransmit := OrderedCollection new

KANetworkLink >> emit: aPacket
"Packets are not transmitted right away, but stored.
Transmission is explicitly triggered later, by sending
#transmit:."

packetsToTransmit add: aPacket

We also add a testing method to check whether a given packet is currently
being transmitted by a link:

KANetworkLink >> isTransmitting: aPacket
... Your code ...

17.7 Transmitting across a link

Transmitting a packet means telling the link’s destination node to receive
it. Nodes only consume packets addressed to them; fortunately this is what
will happen in our test, so we can worry about the alternative case later
(notYetImplemented is a special message that we can use in place of code
that we will have to write eventually, but prefer to ignore for now).

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self notYetImplemented]

209

A simple network simulator

withAddress:
attach: aLink
consume: aPacket
receive: aPacket from: aLink
send: aPacket via: aLink
hasLinkTo: aNode
hasReceived: aPacket

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach
transmit: aPacket
isTransmitting: aPacket

source
destination

NetworkLink

Figure 17-5 Richer API.

Consuming a packet represents what the node will do with it at the applica-
tion level; for now let’s just define an empty consume: method, as a place-
holder:

KANetworkNode >> consume: aPacket
"Default handling is to do nothing."

After consuming the packet, we remember it did arrive; this is mostly for
testing and debugging, but someday we might want to simulate packet losses
and re-emissions. Don’t forget to declare and initialize the arrivedPackets
instance variable, along with its accessor:

KANetworkNode >> hasReceived: aPacket
... Your code ...

Now we can implement the transmit: message. A link can not transmit
packets that have not been sent via it, and once transmitted, the packet
should not be on the link anymore. We should remove it from the link list
of package to be transmitted and tell the destination to receive it using the
message receive:from:.

KANetworkLink >> transmit: aPacket
"Transmit aPacket to the destination node of the receiver link."
... Your code ...

At that point all our tests should pass. Note that the message notYetImple-
mented is not called, since our tests do not yet require routing. Figure 17-5
shows that the API of our classes is getting richer than before.

17.8 The loopback link

On a real network, when a node wants to send a packet to itself, it does not
need any connection to do so. In real-world networking stacks, loopback
routing shortcuts the lower networking layers; however, this is finer detail
than we are modeling here.

Still, we want to model the fact that the loopback link is a little special, so
each node will store its own loopback link, separately from the outgoing

210

17.8 The loopback link

links. We start to define a test.

KANetworkEntitiesTest >> testLoopback
| node packet |
node := KANetworkNode withAddress: #address.
packet := KANetworkPacket from: #address to: #address payload:
#payload.

node send: packet.
node loopback transmit: packet.

self assert: (node hasReceived: packet).
self deny: (node loopback isTransmitting: packet)

The loopback link is implicitely created as part of the node itself. We also
introduce a new send: message, which takes the responsibility of selecting
the link to emit the packet. For triggering packet transmission, we have to
use a specific accessor to find the loopback link of the node.

First, we have to add yet another instance variable in nodes:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks loopback
arrivedPackets'
classVariableNames: ''
category: 'NetworkSimulator-Core'

As with all instance variables, we have to remember to make sure it is cor-
rectly initialized; we thus modify initialize:

KANetworkNode >> initialize
... Your code ...

The accessor has nothing special:

KANetworkNode >> loopback
^ loopback

And finally we can focus on the send: method and automatic link selection.
The method send: should be more generic than the method send:via: and
will be one exposed as a public entry point.

This method has to rely on some routing algorithm to identify which links
will transmit the packet closer to its destination. Since some routing algo-
rithms select more than one link, we will implement routing as an iteration
method, which evaluates the given block for each selected link.

KANetworkNode >> send: aPacket
"Send aPacket, leaving the responsibility of routing to the
node."
self

linksTowards: aPacket destinationAddress
do: [:link | self send: aPacket via: link]

211

A simple network simulator

One of the simplest routing algorithm is flooding: just send the packet via
every outgoing link. Obviously, this is a waste of bandwidth, but it works
without any knowledge of the network topology beyond the list of outgoing
links.

However, there is one case where we know how to route the packet: if the
destination address matches the one of the current node, we can select the
loopback link alone. The logic of linksTowards:do: is then to check is the
address we want to send the packet is the one of the node. In that case we
execute the block using the loopback link, else we simple iterate on the out-
going links of the receiver.

KANetworkNode >> linksTowards: anAddress do: aBlock
"Simple flood algorithm: route via all outgoing links.
However, just loopback if the receiver node is the routing
destination."
... Your code ...

Now we have the basic model working, and we can try more realistic exam-
ples.

17.9 Modeling the network itself

More realistic tests will require non-trivial networks. We thus need an ob-
ject that represents the network as a whole, to avoid keeping many nodes
and links in individual variables. We will introduce a new class KANetwork,
whose responsibility is to help us build, assemble then find the nodes and
links involved in a network.

Let’s start by creating another test class, to keep things in order:

TestCase subclass: #KANetworkTest
instanceVariableNames: 'net hub alone'
classVariableNames: ''
category: 'NetworkSimulator-Tests'

Since every test needs to rebuild the whole example network from scratch,
we specify so in the setUpmethod:

KANetworkTest >> setUp
self buildNetwork

Before anything else, let’s write a test that will pass once we’ve made progress;
we want to access network nodes given only their addresses. Here we check
that we get a hub node based on its address:

KANetworkTest >> testNetworkFindsNodesByAddress
self

assert: (net nodeAt: hub address ifNone: [self fail])
equals: hub

212

17.9 Modeling the network itself

mac

pc 1

hub

pc 2

impr

alone

ping

pong

Figure 17-6 A hub.

We will have to implement this nodeAt:ifNone: on our KANetwork class;
but first we need to decide how its instances are built. Let’s build network
net, with the main part connected in a star shape around a hub node; a pair
of nodes ping and pong are part of the network but not connected to hub,
and the alone node is just by itself, not even added to the network as shown
in Figure 17-6.

Expanding a network implies adding new connections and possibly new
nodes to it. If the net object understands a connect: aNode to: anoth-
erNodemessage, you should be able to build nodes and connect them into a
network that matches the figure.

KANetworkTest >> buildNetwork
alone := KANetworkNode withAddress: #alone.
net := KANetwork new.
hub := KANetworkNode withAddress: #hub.
#(mac pc1 pc2 prn)

do: [:addr |
| node |
node := KANetworkNode withAddress: addr.
net connect: node to: hub].

net connect: (KANetworkNode withAddress: #ping) to:
(KANetworkNode withAddress: #pong)

The name of the connect:to: message suggests that establishing the bidi-
rectional links is the responsibility of the net object. It also has to remember
enough info so we can inspect the network topology; we can simply store
nodes and links in a couple of sets, even though that representation is a little
redundant. Let’s define the class with two instance variables:

Object subclass: #KANetwork
instanceVariableNames: 'nodes links'
classVariableNames: ''
category: 'NetworkSimulator-Core'

213

A simple network simulator

Whenever we define an instance variable, initialization comes next:

KANetwork >> initialize
... Your code ...

Now we can give the network the possibility to create links. This method we
will use to add links to the network link collection.

KANetwork >> makeLinkFrom: aNode to: anotherNode
^ KANetworkLink from: aNode to: anotherNode

We add a low level method add: to add a node in a network.

KANetwork >> add: aNode
nodes add: aNode

To be able to test the network construction we add a little test message;

KANetwork >> doesRecordNode: aNode
^ nodes includes: aNode

Now, we can add isolated nodes to the network, even if it does not seem very
useful.

Connecting nodes.

Connecting nodes without ensuring that they are part of the network really
does not make sense. Therefore, when connecting nodes, we will first ensure
the nodes are added (by simply adding them in the node Set of the network),
then we create and attach links in both directions; finally we store both links.

Here is a test covering this aspect.

KANetworkTest >> testConnect
| netw hubb mac pc1 |
netw := KANetwork new.
hubb := KANetworkNode withAddress: #hub.
mac := KANetworkNode withAddress: #mac.
pc1 := KANetworkNode withAddress: #pc1.

netw connect: hubb to: mac.
self assert: (hubb hasLinkTo: mac).
self assert: (mac hasLinkTo: hubb).
self assert: (netw doesRecordNode: hubb).
self assert: (netw doesRecordNode: mac).

netw connect: hubb to: pc1.
self assert: (hubb hasLinkTo: pc1).
self assert: (mac hasLinkTo: hubb)

Now implement the connect:to: method; for concision, note that the at-
tachmethod we defined previously effectively returns the link.

214

17.10 Looking up nodes

KANetwork >> connect: aNode to: anotherNode
... Your code ...

The test testConnect should be green.

17.10 Looking up nodes

At this point, the test testNetworkFindsNodesByAddress should run through
setUp but fail in the unit test itself, because we still need to implement node
lookup. The base lookup should find the first node that has the requested ad-
dress, or evaluate a fall-back block (a perfect case for the detect:ifNone:
message):

KANetwork >> nodeAt: anAddress ifNone: noneBlock
... Your code ...

We can also make a convenience nodeAt: method for node lookup, that will
raise the predefined NotFound exception if it does not find the node. Let’s
first write a test which validates this behavior:

KANetworkTest >> testNetworkOnlyFindsAddedNodes
self

should: [net nodeAt: alone address]
raise: NotFound

Then we can simply express nodeAt: by delegating to nodeAt:ifNone:.
Note that raise an exception, you simply send the message signal to the ex-
ception class. Here we use the specific class method signalFor:in: defined
on the NotFound class.

KANetwork >> nodeAt: anAddress
^ self

nodeAt: anAddress
ifNone: [NotFound signalFor: anAddress in: self]

17.11 Looking up links

Next, we want to be able to lookup links between two nodes. Again we define
a new test:

KANetworkTest >> testNetworkFindsLinks
| link |
self

shouldnt: [link := net linkFrom: #pong to: #ping]
raise: NotFound.

self
assert: link source
equals: (net nodeAt: #pong).

self
assert: link destination

215

A simple network simulator

equals: (net nodeAt: #ping)

And we define the method linkFrom:to: returning the link between source
and destination nodes with matching addresses, and signalling NotFound if
no such link is found:

KANetwork >> linkFrom: sourceAddress to: destinationAddress
... Your code ...

Final check.

As a final check, let’s try some of the previous tests, first on the isolated
alone node, showing that loopback works even without a network connec-
tion:

KANetworkTest >> testSelfSend
| packet |
packet := KANetworkPacket

from: alone address
to: alone address
payload: #something.

self assert: (packet isAddressedTo: alone).
self assert: (packet isOriginatingFrom: alone).

alone send: packet.
self deny: (alone hasReceived: packet).
self assert: (alone loopback isTransmitting: packet).

alone loopback transmit: packet.
self deny: (alone loopback isTransmitting: packet).
self assert: (alone hasReceived: packet)

You can see that we used new convenience testing methods isAddressedTo:
and isOriginatingFrom: which help inspect the state of a simulated net-
work without explicitly comparing addresses. However, those methods should
not take part in network simulation code, since in the real world nodes can
never know their peers other than through their addresses.

KANetworkPacket >> isAddressedTo: aNode
^ destinationAddress = aNode address

KANetworkPacket >> isOriginatingFrom: aNode
^ sourceAddress = aNode address

The second test attempts transmitting a packet in the network, between the
directly connected nodes ping and pong:

KANetworkTest >> testDirectSend
| packet ping pong link |
packet := KANetworkPacket from: #ping to: #pong payload: #ball.
ping := net nodeAt: #ping.
pong := net nodeAt: #pong.

216

17.12 Packet delivery with forwarding

link := net linkFrom: #ping to: #pong.

ping send: packet.
self assert: (link isTransmitting: packet).
self deny: (pong hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (pong hasReceived: packet)

Both tests should pass with no additional work, since they just reproduce
what we already tested in KANetworkEntitiesTest and adding KANetwork
did not impact the established behavior of nodes, links, and packets.

17.12 Packet delivery with forwarding

Until now, we only tested packet delivery between directly connected nodes;
let’s try sending a node so that the packet has to be forwarded through the
hub.

KANetworkTest >> testSendViaHub
| hello mac pc1 firstLink secondLink |
hello := KANetworkPacket from: #mac to: #pc1 payload: 'Hello!'.
mac := net nodeAt: #mac.
pc1 := net nodeAt: #pc1.
firstLink := net linkFrom: #mac to: #hub.
secondLink := net linkFrom: #hub to: #pc1.

self assert: (hello isAddressedTo: pc1).
self assert: (hello isOriginatingFrom: mac).

mac send: hello.
self deny: (pc1 hasReceived: hello).
self assert: (firstLink isTransmitting: hello).

firstLink transmit: hello.
self deny: (pc1 hasReceived: hello).
self assert: (secondLink isTransmitting: hello).

secondLink transmit: hello.
self assert: (pc1 hasReceived: hello).

If you run this test, you will see that it fails because of the notYetImple-
mentedmessage we left earlier in receive:from:; it’s time to fix that! When
a node receives a packet but is not the recipient, it should forward the packet:

217

A simple network simulator

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self forward: aPacket from: aLink]

Now we need to implement packet forwarding, but there is a trap. An easy
solution would be to simply send: the packet again: the hub would send the
packet to all its connected nodes, one of which happens to be pc1, the recipi-
ent, so all is good!

Wrong…

The packet would be also sent to other nodes than the recipient; what would
those nodes do when they receive a packet not addressed to them? Forward
it. Where? To all their neighbours, which would forward it again... so when
would the forwarding stop?

To fix this, we need hubs to behave differently from nodes. In reality, hubs
work at the lower layers of the OSI model, but our simplified model does not
have that level of detail. We can approximate this by saying that upon recep-
tion of a packet addressed to another node, a hub should forward the packet,
but a normal node should just ignore it.

Let’s first define an empty forward:from: method for nodes, then add a
new class for hubs, which will be modeled as nodes with an actual implemen-
tation of forwarding:

KANetworkNode >> forward: aPacket from: arrivalLink
"Do nothing. Normal nodes do not route packets."

17.13 Introducing a new kind of node

Now we define the class KANetworkHub that will be the recipient of hub spe-
cific behavior.

KANetworkNode subclass: #KANetworkHub
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator'

A hub does not have routing information, so all it can do is flood routing,
with a catch: the packet must not be sent back from where it arrived, be-
cause if that happens to be another hub the packet would bounce back and
forth indefinitely. We suggest to take advantage of the message linksTo-
wards:do: that performs an action for all given links to one address.

KANetworkHub >> forward: aPacket from: arrivalLink
... Your code ...

218

17.14 Other examples of specialized nodes

Now we can use a proper hub in our test, replacing the relevant line in KANet-
workTest >> buildNetwork, and check that the testSendViaHub unit test
passes.

hub := KANetworkHub withAddress: #hub.

You have now a nice basis for network simulation. In the following we will
present some possible extensions.

17.14 Other examples of specialized nodes

In this section we will present some extensions of the core to support differ-
ent scenarios. We will propose some tasks to make sure that the extensions
are fully working. In addition in this section we do not define tests and we
strongly encourage you to start to write tests. At the moment of the book
you should be ready to write your own tests and see their values to improve
your development process. So take this opportunity to practice.

Workstations counting received packets

We would like to know how many packets specific nodes are receiving. In
particular when a workstation consumes a packet, it simply increments a
packet counter.

Let’s start by subclassing KANetworkNode:

KANetworkNode subclass: #KANetworkWorkstation
instanceVariableNames: 'receivedCount'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

We need to initialize the receivedCount instance variable. Properly redefin-
ing initialize is enough, because the address is initialized separately in
the constructor method KANetworkNode >> withAddress:; however, it’s
really important not to forget the super initializemessage, because that
method does initialize the default node behavior.

KANetworkWorkstation >> initialize
super initialize.
receivedCount := 0

Now we can redefine consume: accordingly:

KANetworkWorkstation >> consume: aPacket
receivedCount := receivedCount + 1

Define accessors and the printOn: method for debugging. Define a test for
the behavior of workstation nodes.

219

A simple network simulator

Printers accumulating printouts

When a printer consumes a packet, it prints it; we can model the output tray
as a list where packet payloads get queued, and the supply tray as the num-
ber of blank sheets it contains.

The implementation is very similar; we subclass KANetworkNode to redefine
the consume: method:

KANetworkNode subclass: #KANetworkPrinter
instanceVariableNames: 'supply tray'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkPrinter >> consume: aPacket
supply > 0 ifTrue: [^ self "no paper, do nothing"].

supply := supply - 1.
tray add: aPacket payload

Initialization is a bit different, though; since the standard initializemethod
has no argument, the only sensible initial value for the supply instance vari-
able is zero:

KANetworkPrinter >> initialize
super initialize.
supply := 0.
tray := OrderedCollection new

We therefore need a way to pass the initial supply of paper available to a
fresh instance:

KANetworkPrinter >> resupply: paperSheets
supply := supply + paperSheets

For convenience, we can provide an extended constructor to create printers
with a non-empty supply in one message:

KANetworkPrinter class >> withAddress: anAddress initialSupply:
paperSheets
^ (self withAddress: anAddress)

resupply: paperSheets;
yourself

Define accessors and the printOn: method for debugging purpose. Define
some test method for the behavior of printer nodes.

Servers answering requests

When a server node consumes a packet, it converts the payload to uppercase,
then sends that back to the sender of the request.

220

17.15 Conclusion

a1

A C

B

a2

c1b1

b2 b3

Figure 17-7 A possible extension: a more realistic network with a cycle between

three router nodes.

This is yet another subclass which redefines the consume: method, but this
time the node is stateless, so we have no initialization or accessor methods to
write:

KANetworkNode subclass: #KANetworkServer
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkServer >> consume: aPacket
| response |
response := aPacket payload asUppercase.
self send: (KANetworkPacket

from: self address
to: aPacket sourceAddress
payload: response)

Define a test for the behavior of server nodes.

17.15 Conclusion

In this chapter, we built a little network simulation system, step by step. We
showed the benefit of good protocol decompositions.

As a further extension, we suggest modeling a more realistic network with
cycles, as shown in Figure 17-7. Making this work properly will require re-
placing hubs with routers and flood routing with more realistic routing algo-
rithms.

Here is a possible setup for a new family of tests.

221

A simple network simulator

KARoutingNetworkTest >> buildNetwork
| routers |
net := KANetwork new.

routers := #(A B C) collect:
[:each | KANetworkHub withAddress: each].

net connect: routers first to: routers second.
net connect: routers second to: routers third.
net connect: routers third to: routers first.

#(a1 a2) do: [:addr |
net connect: routers first

to: (KANetworkNode withAddress: addr)].
#(b1 b2 b3) do: [:addr |

net connect: routers second
to: (KANetworkNode withAddress: addr)].

net connect: routers third
to: (KANetworkNode withAddress: #c1)

222

CHA P T E R 18
Snakes and ladders

Snakes and Ladders is a simple game suitable for teaching children how to
apply rules (http://en.wikipedia.org/wiki/Snakes_and_ladders). It is dull for
adults because there is absolutely no strategy involved, but this makes it easy
to implement! In this chapter you will implement SnakesAndLadders and we
use it as a pretext to explore design questions.

18.1 Game rules

Snakes and Ladders originated in India as part of a family of die games. The
game was introduced in England as ”Snakes and Ladders” (see Figure 18-1),
then the basic concept was introduced in the United States as Chutes and Lad-
ders. Here is a brief description of the rules:

• Players: Snakes and Ladders is played by two to four players, each
with her/his own token to move around the board.

Figure 18-1 An example Snakes and Ladders board with two ladders and a

snake.

223

http://en.wikipedia.org/wiki/Snakes_and_ladders

Snakes and ladders

• Moving Player: a player rolls a die, then moves the designated num-
ber of tiles, between one and six. Once he lands on a tile, she/he has to
perform any action designated by the tile. (Since the rules are fuzzy we
decided that we can have multiple players in the same tile).

• Ladders: If the tile a player lands on is at the bottom of a ladder, she/he
should climb the ladder, which brings him to a tile higher on the board.

• Snakes: If the tile a player lands on is a head snake, she/he must slide
down the snake, landing on a tile closer to the beginning.

• Winning: the winner is the player who gets to the last tile first, whether
by landing on it from a roll, or by reaching it with a ladder. We decided
that when the player does not move if he does not land directly on the
last tile, it does not move.

18.2 Game possible run

The code snippet below is a possible way to program this game. We take as a
board configuration the one depicted in Figure 18-1. It defines a board game
composed of 12 tiles with two ladders and one snake. We add two players
and then start the game.

| jill jack game |
game := SLGame new tileNumber: 12.
game
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

game
addPlayer: (SLPlayer new name: 'Jill');
addPlayer: (SLPlayer new name: 'Jack').

game play

Since we want to focus on the game logic, you will develop a textual version
of the game and avoid any lengthy user interface descriptions.

The following is an example game execution: Two players are on the first
tile. The board contains two ladders, [2->6] and [7->9], and one snake [5<-11].

Jill rolls a die and throws a 3 and moves to the corresponding tile. Jack rolls a
die and throws a 6 and moves to the corresponding tile and follow its effect,
climbing the ladder at tile 7 up to tile 9. Jack and Jill continue to alternate
taking turns until Jill ends up on the last tile.

[1<Jill><Jack>][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]
<Jill>throws 3:

[1<Jack>][2->6][3][4<Jill>][5][6][7->9][8][9][10][5<-11][12]
<Jack>throws 6:

[1][2->6][3][4<Jill>][5][6][7->9][8][9<Jack>][10][5<-11][12]

224

18.3 Potential objects and responsibilities

<Jill>throws 5:
[1][2->6][3][4][5][6][7->9][8][9<Jack><Jill>][10][5<-11][12]

<Jack>throws 1:
[1][2->6][3][4][5][6][7->9][8][9<Jill>][10<Jack>][5<-11][12]

<Jill>throws 3:
[1][2->6][3][4][5][6][7->9][8][9][10<Jack>][5<-11][12<Jill>]

18.3 Potential objects and responsibilities

Take a piece of paper, study the game rules and list any potential objects and
their behavior. This is an important exercise to practice, training yourself to
discover potential objects and classes.

Techniques such as Responsibility Driven Design exist to help programmers
during this phase of object discovery. Responsibility Driven Design sug-
gests analysing the documents describing a project, and turning the subjects
of sentences into candidate objects and grouping verbs as the behavior of
these objects. Any synonyms are identifed and used to reduce and gather
together similar objects or behavior. Then later objects are grouped into
classes. Some alternate approaches look for relationship patterns between
objects such as part-whole, locations, entity-owner... This could be the topic
of a full book.

Here we follow another path: sketching scenarios. We describe several sce-
narios and from such scenario we identify key playing objects.

• Scenario 1. The game is created with a number of tiles. The game must
have an end and start tiles. Ladders and snakes should be declared.

• Scenario 2. Players are declared. They start on the first tiles.

• Scenario 3. When player rolls a die, he should move the number of tiles
given by the die.

• Scenario 4. After moving the first player a given number of tiles based
on the result of die roll, this is the turn of the second player.

• Scenario 5. When a player arrives to a ladder start, it should be moved
to the ladder end.

• Scenario 6. When a player should move further than the end tile, he
does not move.

• Scenario 7. When a player ends its course on the end tile, he wins and
the game is finished.

Such scenarios are interesting because they are a good basis for tests.

225

Snakes and ladders

Possible class candidates

When reading the rules and the scenario, here is a list of possible classes that
we could use. We will refine it later and remove double or overlapping con-
cepts.

• Game: keeps track of the game state, the players, and whose turn it is.

• Board: keeps the tile configuration.

• Player: keeps track of location on the board and moving over tiles.

• Tile: keeps track of any player on it.

• Snake: is a special tile which sends a player back to an earlier tile.

• Ladder: is a special tile which sends a player ahead to a later tile.

• First Tile: holds multiple players at the beginning of the game.

• Last Tile: players must land exactly on this tile, or else they do not
move.

• Die: rolls and indicates the number of tiles that a player must move
over.

It is not clear if all the objects we identify by looking at the problem and its
scenario should be really turned into real objects. Also sometimes it is use-
ful to get more classes to capture behavior and state variations. We should
look to have an exact mapping between concepts identified in the problem
scenario or description and the implementation.

From analysing this list we can draw some observations:

• Game and Board are probably the same concept and we can merge
them.

• Die may be overkill. Having a full object just to produce a random
number may not be worth, especially since we do not have a super
fancy user interface showing the die rolling and other effect.

• Tile, Snake, Ladder, Last and First Tile all look like tiles with some vari-
ations or specific actions. We suspect that we can reuse some logic by
creating an inheritance hierarchy around the concept of Tile.

About representation

We can implement the same system using different implementation choices.
For example we could have only one class implementing all the game logic
and it would work. Some people may also argue that this is not a bad solu-
tion.

Object-oriented design favors the distribution of the state of the system to
different objects. It is often better to have objects with clear responsibilities.

226

18.4 About object-oriented design

Why? Because you should consider that you will have to rethink, modify or
extend your system. We should be able to understand and extend easily a
system to be able to reply to new requirements.

Not having a nice object-oriented decomposition for a simple game may not
be a problem, as soon as you will start to model a more complex system not
having a good decomposition will hurt you. Real life applications often have
a lifetime up to 25 years.

In addition, imagine that we are a game designer and we want to experiment
with different variations and tiles with new properties such as one super spe-
cial tile changing other tiles, adding snakes before the current player to slow
other participants.

18.4 About object-oriented design

When designing a system, you will often have questions that cannot be blindly
and automatically answered. Often there is no definite answer. This is what
is difficult with object-oriented design and this is why practicing is impor-
tant.

What composes the state of an object? The state of object should character-
ize the object over its lifetime. For example the name of player identifies the
player.

Now it may happen that some objects just because they are instances of dif-
ferent classes do not need the same state but still offer the same set of mes-
sages. For example the tiles and the ladder/snake tiles have probably a simi-
lar API but snake and ladder should hold information of their target tile.

We can also distinguish between the intrinsic state of an object (e.g., name of
player) and the state we use to represent the collaborators of an object.

The other important and difficult question is about the relationships be-
tween the objects. For example imagine that we model a tile as an object,
should this object points to the players it contains. Similarly, should a tile
knows its position or just the game should know the position of each tile.

Should the game object keep the position of the players or just the player.
The game should keep the players list since it should compute who is the
next player.

CRC cards

Some designers use CRC (for Class Responsibility Collaborators) cards: the
idea is to take the list of classes we identified above. For each of them, they
write on a little card: the class name, its responsibility in one or two sen-
tences and list its collaborators. Once this is done, they take a scenario and

227

Snakes and ladders

see how the objects can play such a scenario. Doing so they refine their de-
sign by adding more information (collaborators) to a class or merging two
classes or splitting a class into multiple ones when they fill that a class has
too many responsibilities.

To improve such process, some designers consider implementation concerns
or alternatives and may create objects to represent such variations.

Some heuristics

To help us taking decision, that are some heuristics:

• One object should have one main responsibility.

• Move behavior close to data. If a class defines the behavior of another
object, there is a good chance that other clients of this object are doing
the same and create duplicated and complex logic. If an object defines
a clear behavior, clients just invoke it without duplicating it.

• Prefer domain object over literal objects. As a general principle it is
better to get a reference to a more general objects than a simple num-
ber. Because we can then invoke a larger set of behavior.

Kind of data passed around

Even if in Pharo, everything is an object, storing a mere integer object in-
stead of a full tile can lead to different solutions. There is no perfect solution
mainly consequences of choices and you should learn how to assess a situa-
tion to see which one has better characteristics for your problem.

Here is a question illustrating the problem: Should a ladder know the tile it
forwards the player to or is the index of a tile enough?

When designing the ladder tile behavior, we should understand how we can
access the target tile where the player should be moved to. If we just give
the index of the target to a ladder, the tile has to be able to access the board
containing the tiles else it will be impossible to access to the target tile of the
ladder. The alternative, i.e., passing the tile looks nicer because it represents
a natural relation and there is no need to ask the board.

Agility to adapt

In addition it is important not to get stressed, writing tests that represent
parts or scenario we want to implement is a good way to make sure that we
can adapt in case we discover that we missed a point.

Now this game is interesting also from a test point of view because it may be
difficult to test the parts in isolation (i.e., without requiring to have a game
object).

228

18.5 Let us get started

18.5 Let us get started

You will follow an iterative process and test first approach. You will take
scenario implement a test and define the corresponding classes.

This game implementation raises an interesting question which is how do
we test the game state without hardcoding too much implementation details
in the tests themselves. Indeed tests that validate scenario only involving
public messages and high-level interfaces are more likely to be stable over
time and do not require modifications. Indeed if we check the exact class of
certain objects you will have to change the implementation as well as the
tests when modifying the implementation. In addition, since in Pharo the
tests are normal clients of the objects they test, writing some tests may force
us to define extra methods to access to private data.

But enough talking! Let us start by defining a test class named SLGameTest.
We will see in the course of development if we define other test classes. Our
feeling is that the tiles and players are objects with limited responsibility and
their responsibility is best illustrated (and then tested) when they interact
with each other in the context of a given game. Therefore the class SLGame-
Test describes the place in which relevant scenario will occur.

Define the class SLGameTest.

TestCase subclass: #SLGameTest
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

One of the first scenario is that a game is composed of a certain number of
tiles.

We can write a test as follows but it does not have a lot of value. At the be-
ginning of the development, this is normal to have limited tests because we
do not have enough objects to interact with.

SLGameTest >> testCheckingSimpleGame

| game |
game := SLGame new tileNumber: 12.
self assert: game tileNumber equals: 12

Now we should make this test pass. Some strong advocates of TDD say that
we should code the first simplest method that would make the test pass and
go to the next one. Let us see what it would be (of course this method will be
changed later).

First you should define the class SLGame.

229

Snakes and ladders

Object subclass: #SLGame
instanceVariableNames: 'tiles'
classVariableNames: ''
package: 'SnakesAndLadders'

Now you can define the methods tileNumber: and tileNumber. This is not
really nice because we should get a collection of tiles and now we put a num-
ber.

SLGame >> tileNumber: aNumber
tiles := aNumber

SLGame >> tileNumber
^ tiles

These method definitions are enough to make our test pass. It means that
our test was not really good because tiles should hold a collection containing
the tiles and not just a number. We will address this point later.

18.6 A first real test

Since we would like to be able to check that our game is correct we can use
its textual representation and test it as a way to check the game state. The
following test should what we want.

SLGameTest >> testPrintingSimpleGame

| game |
game := SLGame new tileNumber: 12.
self
assert: game printString
equals: '[1][2][3][4][5][6][7][8][9][10][11][12]'

What we would like is that the printing of the game asks the tiles to print
themselves this way we will be able to take advantage that there will be dif-
ferent tiles in a modular way: i.e. we will not change the game to display the
ladder and snake just have different tiles with different behavior.

The first step is then to define a class named SLTile as follows:

Object subclass: #SLTile
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

Now we would like to test the printing of a single tile. So let us define a test
case named SLTileTest. This test case will test some basic behavior but it is
nice to decompose our implementation process. We are trying to minimize
the gap between one functionality and one test.

230

18.6 A first real test

TestCase subclass: #SLTileTest
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders-Test'

Now we can write a simple test to make sure that we can print a tile.

SLTileTest >> testPrinting

| tile |
tile := SLTile new position: 6.
self assert: tile printString equals: '[6]'

Tile position could have been managed by the game itself. But it means that
we would have to ask the game for the position of a given tile and while it
would work, it does not feel good. In Object-Oriented Design, we should dis-
tribute responsibilities to objects and their state is their first responsibility.
Since the position is an attribute of a tile, better define it there.

This is where you see that the fact that the code is running is not a quality
test for good Object-Oriented Design.

In particular it means that we should add an accessor to set the position and
to add an instance variable position to the class SLile. Execute the test.
You should get a debugger and use it to create a method position: as well
as the instance variable.

Now we can define the printOn: method for tiles as follows. We add a [into
the stream, then we asked the position to print itself in the stream by send-
ing it the message printOn: and we add] in the stream. Since the position
is a simple integer, the result of the position printOn: aStream expres-
sion is just to add a string representing the number in the stream.

SLTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << ']'

Your tile test should pass now. When we read the definition of the method
printOn: above we see that it also sends the message printOn: here to the
number used for the position. Indeed, we can send messages with the same
name to different objects and each object may react differently to these mes-
sages. We can also send a message with the same name than the method to
the receiver to perform a recursive call, but as with any recursive call we
should have a non recursive branch.

We are ready to finish the printing of the game itself. Now we can define the
method printOn: of the game to print all its tiles. Note that this will not
work since so far we did not create tiles.

231

Snakes and ladders

SLGame >> printOn: aStream

tiles do: [:aTile |
aTile printOn: aStream]

We modify the method tileNumber: to create an array of the given size and
store it inside the tiles instance variable and to put a new tile for each posi-
tion. Pay attention the tile should have the correct position.

SLGame >> tileNumber: aNumber
... Your code ...

Now your printing tests should be working both for the tile and the game.
But wait if we run the test testCheckingSimpleGame it fails. Indeed we did
not change the definition tileNumber. Do it and make sure that your tests
all pass. And save your code.

18.7 Accessing one tile

Now we will need to be able to ask the game for a given tile, for example with
the message tileAt:. Let us add a test for it.

SLGameTest >> testTileAt

| game |
game := SLGame new tileNumber: 12.
self assert: (game tileAt: 6) printString equals: '[6]'

Define the method tileAt:.

SLGame >> tileAt: aNumber
... Your code ...

18.8 Adding players

Now we should add players. The first scenario to test is that when we add a
player to game, it should be on the first tile.

Let us write a test: we create a game and a player. Then we add the player to
the game and the player should be part of the players of the first tile.

SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) players includes: jill).

232

18.8 Adding players

Object subclass: #SLPlayer
instanceVariableNames: 'name'
classVariableNames: ''
package: 'SnakesAndLadders'

Define the method name: in the class SLPlayer. Now we should think a bit
how we should manage the players. We suspect that the game itself should
get a list of players so that in the future it can ask each player to play its
turn. Notice the previous sentence: we say each player to play and not the
game to play the next turn - again this is Object-Oriented Design in action.

Now our test does not really cover the point that the game should keep track
of the players so we will not do it. Similarly we may wonder if a player should
know its position. At this point we do not know and we postpone this deci-
sion for another scenario.

SLGame >> addPlayer: aPlayer
(tiles at: 1) addPlayer: aPlayer

Now what is clear is that a tile should keep a player list. Add an instance
variable players to the SLTile class and initialize it to be an OrderedCol-
lection.

SLTile >> initialize
... Your code ...

Then implement the method addPlayer:

SLTile >> addPlayer: aPlayer
... Your code ...

Now all your tests should pass.

Let us the opportunity to write better tests. We should check that we can add
two players and that both are on the starting tile.

SLGameTest >> testSeveralPlayersAtStart

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
self assert: ((game tileAt: 1) players includes: jill).
self assert: ((game tileAt: 1) players includes: jack).

All the tests should pass. This is the time to save and take a break.

233

Snakes and ladders

Figure 18-2 Playground in action. Use Do it and go - to get an embedded inspec-

tor.

18.9 Avoid leaking implementation information

We are not really happy with the previous tests for example testPlayerAt-
Start.

SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) players includes: jill).

Indeed a test is a first client of our code. Here we see in the expression play-
ers includes: jill that we have to know that players are held in a collec-
tion and that this collection includes such a player.

It can be a real problem if later we decide to change how we manage players,
since we will have to change all the places using the result of the players
message.

Let us address this issue: define a method includesPlayer: that returns
whether a tile has the given player.

SLTile >> includesPlayer: aPlayer
... Your code ...

Now we can rewrite the two tests testPlayerAtStart and testSever-
alPlayersAtStart to use this new message.

234

18.10 About tools

SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) includesPlayer: jill).

SLGameTest >> testSeveralPlayersAtStart

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
self assert: ((game tileAt: 1) includesPlayer: jill).
self assert: ((game tileAt: 1) includesPlayer: jack).

18.10 About tools

Pharo is a living environment in which we can interact with the objects. Let
us see a bit of that in action now.

Type the following game creation in a playground (as shown in Figure 18-2).

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
game

Now you can inspect the game either using the inspect command-i or send-
ing the message inspect to the game as in game inspect. You can also use
the do it and go menu item of a playground window. You should get a picture
similar to the one 18-3.

We see that the object is a SLGame instance and it has an instance variable
named tiles. You can navigate on the instance variables as shown in Fig-
ure 18-4. Figure 18-5 shows that we can navigate the object structure: here
we start from the game, go to the first tile and see the two players. At any
moment you can interact with the selected object sending it messages.

18.11 Displaying players

Navigating the structure of the game is nice when we want to debug and in-
teract with the game entities. Now we propose to display the player objects

235

Figure 18-3 Inspecting the game: a game instance and its instance variable

tiles.

Figure 18-4 Navigating inside the game: getting inside the tiles and checking the

players.

18.11 Displaying players

Figure 18-5 Navigating the objects using the navigation facilities of the inspector.

in a nicer way. We will reuse such behavior when printing the game to follow
the movement of the player on the board.

Since we love testing, let us write a test describing what we expect when dis-
playing a game.

SLGameTest >> testPrintingSimpleGameWithPlayers

| game jill jack |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill. "first player"
game addPlayer: jack.
self
assert: game printString
equals: '[1<Jill><Jack>][2][3][4][5][6][7][8][9][10][11][12]'

To make this test pass, you must define a printOn: on SLPlayer. Make sure
that the printOn: of SLTile also invokes this new method.

SLPlayer >> printOn: aStream
... Your code ...

Here is a possible implementation for the tile logic.

237

Snakes and ladders

SLTile >> printOn: aStream
aStream << '['.
position printOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].
aStream << ']'

Run your tests, they should pass.

18.12 Preparing to move players

To move the player we need to know the tile on which it will arrive. We want
to ask the game: what is the target tile if this player (for example, jill) is mov-
ing a given distance. Let us write a test for the message tileFor: aPlayer
atDistance: aNumber.

SLGameTest >> testTileForAtDistance

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: (game tileFor: jill atDistance: 4) position equals: 5.

What is implied is that a player should know its location or that the game
should start to look from the beginning to find what is the current position
of a player. The first option looks more reasonable in terms of efficiency and
this is the one we will implement.

Let us write a simpler test for the introduction of the position in a player.

SLGameTest >> testPlayerAtStartIsAtPosition1

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: jill position equals: 1.

Define the methods position and position: in the class SLPlayer and add
an instance variable position to the class. If you run the test it should fail
saying that it got nil instead of one. This is normal because we never set the
position of a player. Modify the addPlayer: to handle this case.

SLGame >> addPlayer: aPlayer
... Your code ...

The test testPlayerAtStartIsAtPosition1 should now pass and we can
return to the testTileForAtDistance. Since we lost a bit track, the best
thing to do is to run our tests and check why they are failing. We get an error

238

18.13 Finding the tile of a player

saying that a game instance does not understand the message tileFor:at-
Distance: this is normal since we never implemented it. For now we do not
consider that a roll can bring the player further than the last tile.

Let us fix that now. Define the method tileFor:atDistance:
SLGame >> tileFor: aPlayer atDistance: aNumber

... Your code ...

Now all your test should pass and this is a good time to save your code.

18.13 Finding the tile of a player

We can start to move a player from a tile to another one. We should get the
tile destination using the message tileFor:atDistance: and add the player
there. Of course we should not forget that the tile where the player is cur-
rently positioned should be updated. So we need to know what is the tile of
the player.

Now once a player has position it is then easy to find the tile on top of which
it is. Let us write a test for it.

SLGameTest >> testTileOfPlayer

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: (game tileOfPlayer: jill) position equals: 1.

Implement the method tileOfPlayer:.

SLGame >> tileOfPlayer: aSLPlayer
... Your code ...

18.14 Moving to another tile

Now we are ready to work on moving a player from one tile to the other. Let
us express a test: we create only one player. We test that after the move, the
new position is the one of the target tile, that the original tile does not have
player and the target tile has effectively the player.

SLGameTest >> testMovePlayerADistance

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game movePlayer: jill distance: 4.
self assert: jill position equals: 5.

239

Snakes and ladders

self assert: (game tileAt: 1) players isEmpty.
self assert: ((game tileAt: 5) includesPlayer: jill).

What is hidden in this test is that we should be able to remove a player from
a tile.

Since we should remove the player of a tile when it moves, implement the
method

SLTile >> removePlayer: aPlayer
... Your code ...

Now propose an implementation of the method movePlayer: aPlayer dis-
tance: anInteger. You should get the destination tile for the player, re-
move the player from its current tile, add it to the destination tile and change
the position of the player to reflect its new position.

SLGame >> movePlayer: aPlayer distance: anInteger
... Your code ...

We suspect that when we will introduce ladder and snake tiles, we will have
to revisit this method because snakes and ladders do not store players just
move them around.

About our implementation

The implementation that we propose below for the method movePlayer:
aPlayer distance: anInteger is not as nice as we would like it to be.
Why? Because it does not give a chance to the tiles to extend this behavior
and our experience tells us that we will need it when we will introduce the
snake and ladder. We will discuss that when we will arrive there.

SLGame >> movePlayer: aPlayer distance: anInteger
| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) removePlayer: aPlayer.
targetTile addPlayer: aPlayer.
aPlayer position: targetTile position.

18.15 Snakes and ladders

Now we can introduce the two special tiles: the snakes and ladders. Let us
analyse a bit their behavior: when a player lands on such a tile, it is automat-
ically moved to another tile. As such, snake and ladder tiles do not need to
keep references to players because players never stay on them.

Snakes is really similar to ladders: we could just have a special kind of tiles
to manage them. Now we will define two separate classes so that we can add
extra behavior. Remember creating a class is cheap. One behavior we will

240

18.16 A hierarchy of tiles

tileAt:
tileOfPlayer:
tileFor:atDistance:
movePlayer:distance:

tiles
Game

addPlayer:
removePlayer:

players
position

Tile

name
position

Player

Figure 18-6 Current simple design: three classes with a player acting a simple

object.

implement is a different printed version so that we can identify the kind of
tile we have.

At the beginning of the chapter we used -> for ladders and <- for snakes.

[1<Jill><Jack>][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]

18.16 A hierarchy of tiles

We have now our default tile and two kinds of different active tiles. Now we
will split our current tile class to be able to reuse a bit of its state and behav-
ior with the new tiles. Our current tile class will then be one of the leaves of
our hierarchy tree.

To factor the behavior of the active tiles, we will introduce a new class named
ActiveTile. Once we will be done, we should have a hierarchy as the one
presented in the Figure 18-7.

Let us start create the hierarchy.

Split Tile class in two

Let us do the following actions:

• Using the class refactoring ”insert superclass” (click on the SLTile
and check the class refactoring menu), introduce a new superclass to
SLTile. Name it SLAbstractTile.

• Run the tests and they should pass.

• Using the class instance variable refactoring ”pull up”, push the posi-
tion instance variable

• Run the tests and they should pass.

241

Snakes and ladders

tileAt:
tileOfPlayer:
tileFor:atDistance:
movePlayer:distance:

tiles
Game

printOn:
position
AbstractTile

printOn:

name
position

Player

targetTile
ActiveTile

addPlayer:
removePlayer:
printOn:
includesPlayer:

players
Tile

printOn:
SnakeTile

printOn:
LadderTile

Figure 18-7 A hierarchy of tiles.

• Using the method refactoring ”push up”, push the methods position
and position:.

• Run the tests and they should pass.

What you see is that we did not execute the actions randomly but we want to
control that each step is under control using the tests.

Here are the classes and methods printOn:.

Object subclass: #SLAbstractTile
instanceVariableNames: 'position'
classVariableNames: ''
package: 'SnakesAndLadders'

Define a printOn: method so that all the subclasses can be displayed in the
board by their position.

SLAbstractTile >> printOn: aStream
aStream << '['.
position printOn: aStream.
aStream << ']'

SLAbstractTile subclass: #SLTile
instanceVariableNames: 'players'
classVariableNames: ''
package: 'SnakesAndLadders'

Adding snake and ladder tiles

Now we can add a new subclass to SLAbstractTile.

242

18.16 A hierarchy of tiles

SLAbstractTile subclass: #SLActiveTile
instanceVariableNames: 'targetTile'
classVariableNames: ''
package: 'SnakesAndLadders'

We add a method to: to set the destination tile.

SLActiveTile >> to: aTile
targetTile := aTile

Then we add the two new subclasses of SLActiveTile

SLActiveTile subclass: #SLSnakeTile
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

SLSnakeTile >> printOn: aStream

aStream << '['.
targetTile position printOn: aStream.
aStream << '<-'.
position printOn: aStream.
aStream << ']'

SLActiveTile subclass: #SLLadderTile
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

This is fun to see that the order when to print the position of the tile is dif-
ferent between the snakes and ladders.

SLLadderTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << '->'.
targetTile position printOn: aStream.
aStream << ']'

We did on purpose not to ask you to define tests to cover the changes. This
exercise should show you how long sequence of programming without adding
new tests expose us to potential bugs. They are often more stressful.

So let us add some tests to make sure that our code is correct.

SLTileTest >> testPrintingLadder

| tile |
tile := SLLadderTile new position: 2; to: (SLTile new position: 6).
self assert: tile printString equals: '[2->6]'

243

Snakes and ladders

SLTileTest >> testPrintingSnake

| tile |
tile := SLSnakeTile new position: 11; to: (SLTile new position: 5).
self assert: tile printString equals: '[5<-11]'

Run the tests and they should pass. Save your code. Take a rest!

18.17 New printing hook

When we look at the printing situation we see code duplication logic. For
example, we always see at least the repetition of the first and last expression.

SLTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].
aStream << ']'

SLLadderTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << '->'.
targetTile position printOn: aStream.
aStream << ']'

Do you think that we can do better? What would be the solution?

In fact what we would like is to have a method that we can reuse and that
handles the output of '[]'. And in addition we would like to have another
method for the contents between the parentheses and that we can specialize
it. This way each class can define its own behavior for the inside part and
reuse the parenthesis part.

This is what you will do now. Let us split the printOn: method of the class
SLAbstractTile in two methods:

• a new method named printInsideOn: just printing the position, and

• the printOn: method using this new method.

SLAbstractTile >> printInsideOn: aStream

position printOn: aStream

Now define the method printOn: to produce the same behavior as before
but calling the message printInsideOn:.

SLAbstractTile >> printOn: aStream
... Your code ...

244

18.18 Using the new hook

printOn:
printInsideOn:

position
AbstractTile

targetTile
ActiveTile

addPlayer:
removePlayer:
printInsideOn:

players
Tile

printInsideOn:
SnakeTile

printInsideOn:
LadderTile

Figure 18-8 Introducing printInsideOn: as a new hook.

Run your tests and they should pass. You may have noticed that this is nor-
mal because none of them is covering the abstract tile. We should have been
more picky on our tests.

What you should see is that we will have only one method defining the be-
havior of representing the surrounding of a tile and this is much better if one
day we want to change it.

18.18 Using the new hook

Now you are ready to express the printing behavior of SLTile, SLSnake and
SLLadder in a much more compact fashion. Do not forget to remove the
printOn: methods in such classes, else they will hide the new behavior (If
you do not get why you should read again the chapter on inheritance). You
should get the situation depicted as in Figure 18-8.

Here is our definition for the printInsideOn: method of the class SLTile.

SLTile >> printInsideOn: aStream

super printInsideOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].

What you should see is that we are invoking the default behavior (from the
class SLAbstractTile) using the super pseudo-variable and we enrich it
with the information of the players.

Define the one for the SLLadderTile class and the one for SLSnakeTile.

SLLadderTile >> printInsideOn: aStream
... Your code ...

245

Snakes and ladders

SLSnakeTile >> printInsideOn: aStream
... Your code ...

super does not have to be the first expression

Now we show you our definition of printInsideOn: for the class SLSnakeTile.
Why do we show it? Because it shows you that an expression invoking an
overriden method can be placed anywhere. It does not have to be the first
expression of a method. Here it is the last one.

SLSnakeTile >> printInsideOn: aStream

targetTile position printOn: aStream.
aStream << '<-'.
super printInsideOn: aStream

Do not forget to run your tests. And they should all pass.

18.19 About hooks and templates

If we look at what we did. We created what is called a Hook/Template.

• The template method is the printOn: method. It defines a context of
the execution of the hook methods.

• The printInsideOn: message is the hook that get specialized for each
subclass. It happens in the context of a template method.

What you should see is that the printOn: message is also a hook of the printString
message. There the printStringmethod is creating a context and send the
message printOn: which gets specialized.

The second point that we want to stress is that we turned expressions into
a self-message. We transformed the expressions position printOn: aS-
tream into self printInsideOn: aStream and such simple transformation
created a point of variation extensible using inheritance. Note that the ex-
pression could have been a lot more complex.

Finally what is important to realize is that even position printOn: aS-
tream creates a variation point. Imagine that we have multiple kind of po-
sitions, this expression will invoke the corresponding method on the object
that is currently referred to by position. Such position objects could or not
be organized in a hierarchy as soon as they offer a similar interface. So each
message is in fact a variation point in a program.

18.20 Snake and ladder declaration

Now we should add to the game some messages to declare snake and ladder
tiles. We propose to name the messages setLadderFrom:to: and setSnake-

246

18.21 Better tile protocol

From:to:. Now let us write a test and make sure that it fails before starting.

SLGameTest >> testFullGamePrintString

| game |
game := SLGame new tileNumber: 12.
game
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

self
assert: game printString
equals: '[1][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]'

Define the method setSnakerFrom:to: that takes two positions, the first
one is the position of the tile and the second one is the position of the target.
Pay attention that the message to: of the active tiles expects a tile and not a
position.

SLGame >> setSnakeFrom: aSourcePosition to: aTargetPosition
... Your code ...

SLGame >> setLadderFrom: aSourcePosition to: aTargetPosition
... Your code ...

Run your tests! And save your code.

18.21 Better tile protocol

Now we should define what should happen when a player lands on an active
tiles (snake or ladder). Indeed for the normal tiles, we implemented that the
player change its position, then the origin tile loses the player and the re-
ceiving tile gains the player.

We implemented such behavior in the method movePlayer: aPlayer dis-
tance: anInteger shown below. We paid attention that a player cannot be
in two places at the same time: we remove it from its tile, then move it to its
destination.

SLGame >> movePlayer: aPlayer distance: anInteger
| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) removePlayer: aPlayer.
targetTile addPlayer: aPlayer.
aPlayer position: targetTile position.

At that moment we said that we did not like too much this implementation.
And now this is the time to understand why and do improve the situation.

First it would be good that the behavior to manage the entering and leaving
of a tile would be closer to the objects performing it. We have two solutions:

247

Snakes and ladders

we could move it to the tile or to the player class. Second we should take an-
other factor into play: different tiles have different behavior; normal tiles
manage players and active tiles are placing players on their target tile and
they do not manage players. Therefore it is more interesting to define a vari-
ation point on the tile because we will be able to exploit it for normal and
active tiles.

We propose to define two methods on the tile: one to accept a new player
named acceptPlayer: and to release a player named releasePlayer:. Let
us rewrite movePlayer: aPlayer distance: anInteger with such meth-
ods.

SLTile >> acceptPlayer: aPlayer
self addPlayer: aPlayer.
aPlayer position: position.

The use in this definition of self messages or direct instance variable access is
an indication that definition belongs to this class. Now we define the method
releasePlayer: as follows:

SLTile >> releasePlayer: aPlayer
self removePlayer: aPlayer

Defining the method releasePlayer: was not necessary but we did it be-
cause it is more symmetrical.

Now we can redefine movePlayer: aPlayer distance: anInteger.

SLGame >> movePlayer: aPlayer distance: anInteger
| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) releasePlayer: aPlayer.
targetTile acceptPlayer: aPlayer.

All the tests should pass. And this is the power of test driven development,
we change the implementation of our game and we can verify that we did
not change its behavior.

Another little improvement

Now we can improve the definition of acceptPlayer:. We can implement its
behavior partly on SLAbstractTile and partly on SLTile. This way the def-
inition of the methods are closer to the definition of the instance variables
and the state of the objects.

SLAbstractTile >> acceptPlayer: aPlayer
aPlayer position: position

SLTile >> acceptPlayer: aPlayer
super acceptPlayer: aPlayer.
self addPlayer: aPlayer

248

18.22 Active tile actions

printOn:
printInsideOn:
acceptPlayer:
releasePlayer:

position
AbstractTile

acceptPlayer:
targetTile
ActiveTile

addPlayer:
removePlayer:
printInsideOn:
includesPlayer:
acceptPlayer:
releasePlayer:

players
Tile

printInsideOn:
SnakeTile

printInsideOn:
LadderTile

Figure 18-9 acceptPlayer: and releasePlayer: new message.

Note that we change the order of execution by invoking the superclass be-
havior first (using super acceptPlayer: aPlayer) because we prefer to
invoke first the superclass method, because we prefer to think that a subclass
is extending an existing behavior.

To be complete, we define that releasePlayer: does nothing on SLAb-
stractTile. We define it to document the two faces of the protocol. Figure
18-9 shows the situation.

SLAbstractTile >> releasePlayer: aPlayer
"Do nothing by default, subclasses may modify this behavior."

18.22 Active tile actions

Now we are ready to implement the behavior of the active tiles. But.... yes we
will write a test first. What we want to test is that when a player lands on a
snake it falls back on the target and that the original tile does not have this
player anymore. This is what this test expresses.

SLGameTest >> testPlayerStepOnASnake

| jill game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

249

Snakes and ladders

jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game movePlayer: jill distance: 10.
self assert: jill position equals: 5.
self assert: (game tileAt: 1) players isEmpty.
self assert: ((game tileAt: 5) includesPlayer: jill).

Now we just have to implement it!

SLActiveTile >> acceptPlayer: aPlayer
... Your code ...

There is nothing to do for the message releasePlayer:, because the player
is never added to the active tile. Once you are done run the tests and save.

18.23 Alternating players

We are nearly finished with the game. First we should manage that each turn
a different player is playing and that the game finishes when the current
player lands on the final tile.

We would like to be able to:

• make the game play in automatic mode

• make the game one step at the time so that humans can play.

The logic for the automatic play can be expressed as follows:

play
[self isNotOver] whileTrue: [
self playPlayer: (self currentPlayer) roll: 6 atRandom]

Until the game is finished, the game identifies the current player and plays
this player for a given number given by a die of six faces. The expression 6
atRandom selects randomly a number between 1 and 6.

18.24 Player turns and current player

The game does not keep track of the players and their order. We will have to
support it so that each player can play in alternance. It will also help us to
compute the end of the game. Given a turn, we should identify the current
player.

The following test verifies that we obtain the correct player for a given turn.

SLGameTest >> testCurrentPlayer

| jack game jill |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.

250

18.25 How to find the logic of currentPlayer?

jill := SLPlayer new name: 'Jill'.
game addPlayer: jack; addPlayer: jill.
game turn: 1.
self assert: game currentPlayer equals: jack.
game turn: 2.
self assert: game currentPlayer equals: jill.
game turn: 3.
self assert: game currentPlayer equals: jack.

You should add two instance variables players and turn to the SLGame
class.

Then you should initialize the two new instance variables adequately: the
players instance variable to an OrderedCollection and the turn instance
variable to zero.

SLGame >> initialize
... Your code ...

You should modify the method addPlayer: to add the player to the list of
players as shown by the method below.

SLGame >> addPlayer: aPlayer
aPlayer position: 1.
players add: aPlayer.
(tiles at: 1) addPlayer: aPlayer

We define also the setter method turn: to help us for the test. This is where
you see that it would be good in Pharo to have the possibility to write tests
inside the class and not to be forced to add a method definition just for a test
but SUnit does not allow such behavior. One approach to resolve this, and
ensuring only test code makes use of turn:, is to use class extensions. We
make turn: belong to the *SnakesAndLadders-Test protocol. In this way if
we only load the SnakesAndLadders package then it will not include any test
specific methods.

SLGame >> turn: aNumber
turn := aNumber

18.25 How to find the logic of currentPlayer?

Now we should define the method currentPlayer. We will try to show you
how we brainstorm and experiment when we are looking for an algorithm or
even the logic of a simple method.

Imagine a moment that we have two players Jack-Jill. The turns are the fol-
lowing ones: Jack 1, Jill 2, Jack 3, Jill 4, Jack 5.....

Now we know that we have two players. So using this information, at turn
5, the rest of the division of 5 by 2, gives us 1 so this is the turn of the first

251

Snakes and ladders

player. At turn 4, the rest of the division of 5 by 2 is zero so we take the latest
player: Jill.

Here is an expression that shows the result when we have two players and
we use the division.

(1 to: 10) collect: [:each | each -> (each \\ 2)]
> {1->1. 2->0. 3->1. 4->0. 5->1. 6->0. 7->1. 8->0. 9->1. 10->0}

Here is an expression that shows the result when we have three players and
we use the division.

(1 to: 10) collect: [:each | each -> (each \\ 3)]
> {1->1. 2->2. 3->0. 4->1. 5->2. 6->0. 7->1. 8->2. 9->0. 10->1}

What you see is that each time we get 0, it means that this is the last player
(second in the first case and third in the second).

This is what we do with the following method. We compute the rest of the
division. We obtain a number between 0 and the player number minus one.
This number indicates the index of the number in the players ordered col-
lection. When it is zero it means that we should take the latest player.

SLGame >> currentPlayer

| rest playerIndex |
rest := (turn \\ players size).
playerIndex := (rest isZero

ifTrue: [players size]
ifFalse: [rest]).

^ players at: playerIndex

Run your tests and make sure that they all pass and save.

18.26 Game end

Checking for the end of the game can be implemented in at least two ways:

• the game can check if any of the player is on the last tile.

• or when a player lands on the last tile, its effect is to end the game.

We will implement the first solution but let us write a test first.

SLGameTest >> testIsOver

| jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jack.
self assert: jack position equals: 1.
game movePlayer: jack distance: 11.
self assert: jack position equals: 12.

252

18.27 Playing one move

self assert: game isOver.

Now define the method isOver. You can use the anySatisfy: message
which returns true if one of the elements of a collection (the receiver) sat-
isfies a condition. The condition is that a player’s position is the number of
tiles (since the last tile position is equal to the number of tiles).

SLGame >> isOver
... Your code ...

Alternate solution

To implement the second version, we can introduce a new tile SLEndTile.
Here is the list of what should be done:

• define a new class.

• redefine the acceptPlayer: to stop the game. Note that it means that
the tile should have a reference to the game. This should be added to
this special tile.

• initialize the last tile of the game to be an instance of such a class.

18.27 Playing one move

Before automating the play of the game we should make sure that a die roll
will not bring our player outside the board.

Here is a simple test covering the situations.

SLGameTest >> testCanMoveToPosition

| game |
game := SLGame new tileNumber: 12.
self assert: (game canMoveToPosition: 8).
self assert: (game canMoveToPosition: 12).
self deny: (game canMoveToPosition: 13).

Define the method canMoveToPosition:. It takes as input the position of
the potential move.

SLGame >> canMoveToPosition: aNumber
... Your code ...

Playing one game step

Now we are finally ready to finish the implementation of the game. Here are
two tests that check that the game can play a step correctly, i.e., picking the
correct player and moving it in the correct place.

253

Snakes and ladders

SLGameTest >> testPlayOneStep

| jill jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
self assert: jill position equals: 1.
game playOneStepWithRoll: 3.
self assert: jill position equals: 4.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 4) includesPlayer: jill)

SLGameTest >> testPlayTwoSteps

| jill jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game playOneStepWithRoll: 3.
game playOneStepWithRoll: 2.
"nothing changes for jill"
self assert: jill position equals: 4.
self assert: ((game tileAt: 4) includesPlayer: jill).
"now let us verify that jack moved correctly to tile 3"
self assert: (game tileAt: 1) players size equals: 0.
self assert: jack position equals: 3.
self assert: ((game tileAt: 3) includesPlayer: jack)

Here is a possible implementation of the method playOneStepWithRoll:.

SLGame >> playOneStepWithRoll: aNumber

| currentPlayer |
turn := turn + 1.
currentPlayer := self currentPlayer.
Transcript show: currentPlayer printString, 'drew ', aNumber

printString, ': '.
(self canMoveToPosition: currentPlayer position + aNumber)
ifTrue: [self movePlayer: currentPlayer distance: aNumber].

Transcript show: self; cr.

Now we can verify that when a player lands on a ladder it is getting up.

SLGameTest >> testPlayOneStepOnALadder

| jill jack game |
game := SLGame new

254

18.27 Playing one move

Figure 18-10 Playing step by step inside the inspector.

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game playOneStepWithRoll: 1.
self assert: jill position equals: 6.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 6) includesPlayer: jill).

You can try this method inside an inspector and see the result of the moves
displayed in the transcript as shown in Figure 18-10.

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game inspect

255

Snakes and ladders

Figure 18-11 Automated play.

18.28 Automated play

Now we can can define the playmethod as follows and use it as shown in
Figure 18-11.

SLGame >> play

Transcript show: self; cr.
[self isOver not] whileTrue: [
self playOneStepWithRoll: 6 atRandom]

Some final tests

We would like to make sure that the player is not moved when it does not
land on the last tile or that the game is finished when one player lands on the
last tile. Here are two tests covering such behavior.

SLGameTest >> testPlayOneStepOnExactFinish

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.

game playOneStepWithRoll: 11.
"jill lands on the finish tile!"
self assert: jill position equals: 12.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 12) includesPlayer: jill).

256

18.29 Variations

self assert: game isOver.

SLGameTest >> testPlayOneStepOnInexactFinish

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
"jill moves"

game playOneStepWithRoll: 9.
self assert: jill position equals: 10.
self assert: ((game tileAt: 10) includesPlayers: jill).
"jack moves"
game playOneStepWithRoll: 2.
"jill tries to move but in fact stays at her place"
game playOneStepWithRoll: 5.
self assert: jill position equals: 10.
self assert: ((game tileAt: 10) includesPlayer: jill).
self deny: game isOver.

18.29 Variations

As you see this single game has multiple variations. Here are some of the
ones you may want to implement:

• A player who lands on an occupied tile must go back to its originating
tile.

• If you roll a number higher than the number of tiles needed to reach
the last square, you must continue moving backwards from the end.

You will see that such extensions can be implemented in different manner.
We suggest to avoid conditions but define objects responsible for this behav-
ior and its variations.

18.30 Conclusion

This chapter went step by step to the process of getting from requirements
to an actual implementation covered by tests.

This chapter shows that design is an iterative process. What is also impor-
tant is that without tests we would be a lot more worried about breaking
something without be warned immediately. With tests we were able to change

257

Snakes and ladders

some parts of the design and rapidly make sure that the previous specifica-
tion still hold.

This chapter shows that identifying objects and their interactions is not al-
ways straightforward and multiple designs are often valid.

258

CHA P T E R 19
TinyChat: a fun and small chat

client/server

Pharo allows the definition of a REST server in a couple of lines of code thanks
to the Teapot package by zeroflag, which extends the superb HTTP clien-
t/server Zinc developed by BetaNine and was given to the community. The
goal of this chapter is to make you develop, in five small classes, a clien-
t/server chat application with a graphical client. This little adventure will
familiarize you with Pharo and show the ease with which Pharo lets you de-
fine a REST server. Developed in a couple of hours, TinyChat has been de-
signed as a pedagogical application. At the end of the chapter, we propose a
list of possible improvements.

TinyChat has been developed by O. Auverlot and S. Ducasse with a lot of fun.

19.1 Objectives and architecture

We are going to build a chat server and one graphical client as shown in Fig-
ure 19-1.

The communication between the client and the server will be based on HTTP
and REST. In addition to the classes TCServer and TinyChat (the client), we
will define three other classes: TCMessage which represents exchanged mes-
sages (as a future exercise you could extend TinyChat to use more structured
elements such as JSON or STON (the Pharo object format), TCMessageQueue
which stores messages, and TCConsole the graphical interface.

259

TinyChat: a fun and small chat client/server

Figure 19-1 Chatting with TinyChat.

19.2 Loading Teapot

We can load Teapot using the Configuration Browser, which you can find
in the Tools menu item of the main menu. Select Teapot and click ”Install
Stable”. Another solution is to use the following script:

Gofer it
smalltalkhubUser: 'zeroflag' project: 'Teapot';
configuration;
loadStable.

Now we are ready to start.

19.3 Message representation

A message is a really simple object with a text and sender identifier.

Class TCMessage

We define the class TCMessage in the package TinyChat.

Object subclass: #TCMessage
instanceVariableNames: 'sender text separator'
classVariableNames: ''
category: 'TinyChat'

The instance variables are as follows:

• sender: the identifier of the sender,

• text: the message text, and

• separator: a character to separate the sender and the text.

260

19.4 Instance initialisation

Accessor creation

We create the following accessors:

TCMessage >> sender
^ sender

TCMessage >> sender: anObject
sender := anObject

TCMessage >> text
^ text

TCMessage >> text: anObject
text := anObject

19.4 Instance initialisation

Each time an instance is created, its initializemethod is invoked. We re-
define this method to set the separator value to the string >.

TCMessage >> initialize
super initialize.
separator := '>'.

Now we create a class method named from:text: to instantiate a message
(a class method is a method that will be executed on a class and not on an
instance of this class):

TCMessage class >> from: aSender text: aText
^ self new sender: aSender; text: aText; yourself

The message yourself returns the message receiver: this way we ensure
that the returned object is the new instance and not the value returned by
the text: message. This definition is equivalent to the following:

TCMessage class >> from: aSender text: aText
| instance |
instance := self new.
instance sender: aSender; text: aText.
^ instance

19.5 Converting a message object into a string

We add the method printOn: to transform a message object into a character
string. The model we use is sender-separator-text-crlf. Example: ’john>hello
!!!’. The method printOn: is automatically invoked by the method printString.
This method is invoked by tools such as the debugger or object inspector.

261

TinyChat: a fun and small chat client/server

TCMessage >> printOn: aStream

aStream
<< self sender; << separator;
<< self text; << String crlf

19.6 Building a message from a string

We also define two methods to create a message object from a plain string of
the form: 'olivier>tinychat is cool'.

First we create the method fromString: filling up the instance variables
of an instance. It will be invoked like this: TCMessage new fromString:
'olivier>tinychat is cool', then the class method fromString: which
will first create the instance.

TCMessage >> fromString: aString
"Compose a message from a string of this form 'sender>message'."
| items |
items := aString subStrings: separator.
self sender: items first.
self text: items second.

You can test the instance method with the following expression TCMessage
new fromString: 'olivier>tinychat is cool'.

TCMessage class >> fromString: aString
^ self new
fromString: aString;
yourself

When you execute the following expression TCMessage fromString: 'olivier>tiny-
chat is cool' you should get a message. We are now ready to work on the
server.

19.7 Starting with the server

For the server, we are going to define a class to manage a message queue.
This is not really mandatory but it allows us to separate responsibilities.

Storing messages

Create the class TCMessageQueue in the package TinyChat-Server.

Object subclass: #TCMessageQueue
instanceVariableNames: 'messages'
classVariableNames: ''
category: 'TinyChat-server'

262

19.7 Starting with the server

The messages instance variable is an ordered collection whose elements are
instances TCMessage. An OrderedCollection is a collection which dynam-
ically grows when elements are added to it. We add an instance initialize
method so that each new instance gets a proper messages collection.

TCMessageQueue >> initialize
super initialize.
messages := OrderedCollection new.

Basic operations on message list

We should be able to add, clear the list, and count the number of messages,
so we define three methods: add:, reset, and size.

TCMessageQueue >> add: aMessage
messages add: aMessage

TCMessageQueue >> reset
messages removeAll

TCMessageQueue >> size
^ messages size

List of messages from a position

When a client asks the server about the list of the last exchanged messages,
it mentions the index of the last message it knows. The server then answers
the list of messages received since this index.

TCMessageQueue >> listFrom: aIndex
^ (aIndex > 0 and: [aIndex <= messages size])
ifTrue: [messages copyFrom: aIndex to: messages size]
ifFalse: [#()]

Message formatting

The server should be able to transfer a list of messages to its client given an
index. We add the possibility to format a list of messages (given an index).
We define the method formattedMessagesFrom: using the formatting of a
single message as follows:

TCMessageQueue >> formattedMessagesFrom: aMessageNumber

^ String streamContents: [:formattedMessagesStream |
(self listFrom: aMessageNumber)

do: [:m | formattedMessagesStream << m printString]
]

Note how the streamContents: lets us manipulate a stream of characters.

263

TinyChat: a fun and small chat client/server

19.8 The Chat server

The core of the server is based on the Teapot REST framework. It supports
the sending and receiving of messages. In addition this server keeps a list of
messages that it communicates to clients.

TCServer class creation

We create the class TCServer in the TinyChat-Server package.

Object subclass: #TCServer
instanceVariableNames: 'teapotServer messagesQueue'
classVariableNames: ''
category: 'TinyChat-Server'

The instance variable messagesQueue represents the list of received and sent
messages. We initialize it like this:

TCServer >> initialize
super initialize.
messagesQueue := TCMessageQueue new.

The instance variable teapotServer refers to an instance of the Teapot
server that we will create using the method initializePort:

TCServer >> initializePort: anInteger
teapotServer := Teapot configure: {
#defaultOutput -> #text.
#port -> anInteger.
#debugMode -> true

}.
teapotServer start.

The HTTP routes are defined in the method registerRoutes. Three opera-
tions are defined:

• GET messages/count: returns to the client the number of messages
received by the server,

• GET messages/<id:IsInteger>: the server returns messages from an
index, and

• POST /message/add: the client sends a new message to the server.

TCServer >> registerRoutes
teapotServer
GET: '/messages/count' -> (Send message: #messageCount to: self);
GET: '/messages/<id:IsInteger>' -> (Send message: #messagesFrom:
to: self);
POST: '/messages/add' -> (Send message: #addMessage: to: self)

264

19.9 Server logic

Here we express that the path message/count will execute the message mes-
sageCount on the server itself. The pattern <id:IsInteger> indicates that
the argument should be expressed as number and that it will be converted
into an integer.

Error handling is managed in the method registerErrorHandlers. Here we
see how we can get an instance of the class TeaResponse.

TCServer >> registerErrorHandlers
teapotServer
exception: KeyNotFound -> (TeaResponse notFound body: 'No such
message')

Starting the server is done in the class method TCServer class>>startOn:
that gets the TCP port as argument.

TCServer class >> startOn: aPortNumber
^self new
initializePort: aPortNumber;
registerRoutes;
registerErrorHandlers;
yourself

We should also offer the possibility to stop the server. The method stop
stops the teapot server and empties the message list.

TCServer >> stop
teapotServer stop.
messagesQueue reset.

Since there is a chance that you may execute the expression TCServer star-
tOn: multiple times, we define the class method stopAll which stops all the
servers by iterating over all the instances of the class TCServer. The method
TCServer class>>stopAll stops each server.

TCServer class >> stopAll
self allInstancesDo: #stop

19.9 Server logic

Now we should define the logic of the server. We define a method addMes-
sage that extracts the message from the request. It adds a newly created
message (instance of class TCMessage) to the list of messages.

TCServer >> addMessage: aRequest
messagesQueue add: (TCMessage from: (aRequest at: #sender) text:

(aRequest at: #text)).

The method messageCount gives the number of received messages.

265

TinyChat: a fun and small chat client/server

Figure 19-2 Testing the server.

TCServer >> messageCount
^ messagesQueue size

The method messageFrom: gives the list of messages received by the server
since a given index (specified by the client). The messages returned to the
client are a string of characters. This is definitively a point to improve - us-
ing string is a poor choice here.

TCServer >> messagesFrom: request
^ messagesQueue formattedMessagesFrom: (request at: #id)

Now the server is finished and we can test it. First let us begin by starting it:

TCServer startOn: 8181

Now we can verify that it is running either with a web browser (Figure 19-2),
or with a Zinc expression as follows:

ZnClient new url: 'http://localhost:8181/messages/count' ; get

Shell lovers can also use the curl command:

curl http://localhost:8181/messages/count

We can also add a message the following way:

266

19.10 The client

ZnClient new
url: 'http://localhost:8181/messages/add';
formAt: 'sender' put: 'olivier';
formAt: 'text' put: 'Super cool ce tinychat' ; post

19.10 The client

Now we can concentrate on the client part of TinyChat. We decomposed the
client into two classes:

• TinyChat is the class that defines the connection logic (connection,
send, and message reception),

• TCConsole is a class defining the user interface.

The logic of the client is:

• During client startup, it asks the server the index of the last received
message,

• Every two seconds, it requests from the server the messages exchanged
since its last connection. To do so, it passes to the server the index of
the last message it got.

TinyChat class

We now define the class TinyChat in the package TinyChat-client.

Object subclass: #TinyChat
instanceVariableNames: 'url login exit messages console

lastMessageIndex'
classVariableNames: ''
category: 'TinyChat-client'

This class defines the following instance variables:

• url that contains the server url,

• login a string identifying the client,

• messages is an ordered collection containing the messages read by the
client,

• lastMessageIndex is the index of the last message read by the client,

• exit controls the connection. While exit is false, the client regularly
connects to the server to get the unread messages

• console refers to the graphical console that allows the user to enter
and read messages.

We initialize these variables in the following instance initializemethod.

267

TinyChat: a fun and small chat client/server

TinyChat >> initialize
super initialize.
exit := false.
lastMessageIndex := 0.
messages := OrderedCollection new.

HTTP commands

Now, we define methods to communicate with the server. They are based on
the HTTP protocol. Two methods will format the request. One, which does
not take an argument, builds the requests /messages/add and /messages/-
count. The other has an argument used to get the message given a position.

TinyChat >> command: aPath
^'{1}{2}' format: { url . aPath }

TinyChat >> command: aPath argument: anArgument
^'{1}{2}/{3}' format: { url . aPath . anArgument asString }

Now that we have these low-level operations we can define the three HTTP
commands of the client as follows:

TinyChat >> cmdLastMessageID
^ self command: '/messages/count'

TinyChat >> cmdNewMessage
^self command: '/messages/add'

TinyChat >> cmdMessagesFromLastIndexToEnd
"Returns the server messages from my current last index to the

last one on the server."
^ self command: '/messages' argument: lastMessageIndex

Now we can create commands but we need to emit them. This is what we
look at now.

19.11 Client operations

We need to send the commands to the server and to get back information
from the server. We define two methods. The method readLastMessageID
returns the index of the last message received from the server.

TinyChat >> readLastMessageID
| id |
id := (ZnClient new url: self cmdLastMessageID; get) asInteger.
id = 0 ifTrue: [id := 1].
^ id

268

19.11 Client operations

The method readMissingMessages adds the last messages received from the
server to the list of messages known by the client. This method returns the
number of received messages.

TinyChat >> readMissingMessages
"Gets the new messages that have been posted since the last

request."
| response receivedMessages |
response := (ZnClient new url: self cmdMessagesFromLastIndexToEnd;

get).
^ response
ifNil: [0]
ifNotNil: [

receivedMessages := response subStrings: (String crlf).
receivedMessages do: [:msg | messages add: (TCMessage

fromString: msg)].
receivedMessages size.

].

We are now ready to define the refresh behavior of the client via the method
refreshMessages. It uses a light process to read the messages received from
the server at a regular interval. The delay is set to 2 seconds. (The message
fork sent to a block (a lexical closure in Pharo) executes this block in a light
process). The logic of this method is to loop as long as the client does not
specify to stop via the state of the exit variable.

The expression (Delay forSeconds: 2) wait suspends the execution of
the process in which it is executed for a given number of seconds.

TinyChat >> refreshMessages
[
[exit] whileFalse: [

(Delay forSeconds: 2) wait.
lastMessageIndex := lastMessageIndex + (self

readMissingMessages).
console print: messages.

]
] fork

The method sendNewMessage: posts the message written by the client to the
server.

TinyChat >> sendNewMessage: aMessage
^ ZnClient new
url: self cmdNewMessage;
formAt: 'sender' put: (aMessage sender);
formAt: 'text' put: (aMessage text);
post

This method is used by the method send: that gets the text written by the
user. The string is converted into an instance of TCMessage. The message

269

TinyChat: a fun and small chat client/server

is sent and the client updates the index of the last message it knows, then it
prints the message in the graphical interface.

TinyChat >> send: aString
"When we send a message, we push it to the server and in addition

we update the local list of posted messages."

| msg |
msg := TCMessage from: login text: aString.
self sendNewMessage: msg.
lastMessageIndex := lastMessageIndex + (self readMissingMessages).
console print: messages.

We should also handle the server disconnection. We define the method dis-
connect that sends a message to the client indicating that it is disconnecting
and also stops the connecting loop of the server by putting exit to true.

TinyChat >> disconnect
self sendNewMessage: (TCMessage from: login text: 'I exited from

the chat room.').
exit := true

19.12 Client connection parameters

Since the client should contact the server on specific ports, we define a method
to initialize the connection parameters. We define the class method Tiny-
Chat class>>connect:port:login: so that we can connect the following
way to the server: TinyChat connect: 'localhost' port: 8080 login:
'username'
TinyChat class >> connect: aHost port: aPort login: aLogin

^ self new
host: aHost port: aPort login: aLogin;
start

TinyChat class>>connect:port:login: uses the method host:port:lo-
gin:. This method just updates the url instance variable and sets the login
as specified.

TinyChat >> host: aHost port: aPort login: aLogin
url := 'http://' , aHost , ':' , aPort asString.
login := aLogin

Finally we define a method start: which creates a graphical console (that
we will define later), tells the server that there is a new client, and gets the
last message received by the server. Note that a good evolution would be to
decouple the model from its user interface by using notifications.

270

19.13 User interface

TinyChat >> start
console := TCConsole attach: self.
self sendNewMessage: (TCMessage from: login text: 'I joined the

chat room').
lastMessageIndex := self readLastMessageID.
self refreshMessages.

19.13 User interface

The user interface is composed of a window with a list and an input field as
shown in Figure 19-1.

ComposableModel subclass: #TCConsole
instanceVariableNames: 'chat list input'
classVariableNames: ''
category: 'TinyChat-client'

Note that the class TCConsole inherits from ComposableModel. This class is
the root of the user interface logic classes. TCConsole defines the logic of the
client interface (i.e. what happens when we enter text in the input field...).
Based on the information given in this class, the Spec user interface builder
automatically builds the visual representation. The chat instance variable
is a reference to an instance of the client model TinyChat and requires a
setter method (chat:). The list and input instance variables both require
an accessor. This is required by the User Interface builder.

TCConsole >> input
^ input

TCConsole >> list
^ list

TCConsole >> chat: anObject
chat := anObject

We set the title of the window by defining the method title.

TCConsole >> title
^ 'TinyChat'

Now we should specify the layout of the graphical elements that compose the
client. To do so we define the class method TCConsole class>>default-
Spec. Here we need a column with a list and an input field placed right be-
low.

TCConsole class >> defaultSpec
<spec: #default>

^ SpecLayout composed
newColumn: [:c |

271

TinyChat: a fun and small chat client/server

c add: #list; add: #input height: 30]; yourself

We should now initialize the widgets that we will use. The method initial-
izeWidgets specifies the nature and behavior of the graphical components.
The message acceptBlock: defines the action to be executed then the text
is entered in the input field. Here we send it to the chat model and empty it.

TCConsole >> initializeWidgets

list := ListModel new.
input := TextInputFieldModel new
ghostText: 'Type your message here...';
enabled: true;
acceptBlock: [:string |

chat send: string.
input text: ''].

self focusOrder add: input.

The method print displays the messages received by the client and assigns
them to the list contents.

TCConsole >> print: aCollectionOfMessages
list items: (aCollectionOfMessages collect: [:m | m printString

])

Note that this method is invoked by the method refreshMessages and that
changing all the list elements when we add just one element is rather ugly
but ok for now.

Finally we need to define the class method TCConsole class>>attach:
that gets the client model as argument. This method opens the graphical el-
ements and puts in place a mechanism that will close the connection as soon
as the client closes the window.

TCConsole class >> attach: aTinyChat
| window |
window := self new chat: aTinyChat.
window openWithSpec whenClosedDo: [aTinyChat disconnect].
^ window

19.14 Now chatting

Now you can chat with your server. The example resets the server and opens
two clients.

| tco tcs |
TCServer stopAll.
TCServer startOn: 8080.
tco := TinyChat connect: 'localhost' port: 8080 login: 'olivier'.
tco send: 'hello'.
tcs := TinyChat connect: 'localhost' port: 8080 login: 'Stef'.

272

19.15 Conclusion and ideas for future extensions

Figure 19-3 Server access.

tcs send: 'salut olivier'

19.15 Conclusion and ideas for future extensions

We show that creating a REST server is really simple with Teapot. TinyChat
provides a fun context to explore programming in Pharo and we hope that
you like it. We designed TinyChat so that it favors extensions and explo-
ration. Here is a list of possible extensions.

• Using JSON or STON to exchange information and not plain strings.

• Making sure that the clients can handle a failure of the server.

• Adding only the necessary messages to the list in the graphical client.

• Managing concurrent access in the server message collection (if the
server should handle concurrent requests the current implementation
is not correct).

• Managing connection errors.

• Getting the list of connected users.

• Editing the delay to check for new messages.

There are probably more extensions and we hope that you will have fun ex-
ploring some. The code of the project is available at http://www.smalltalkhub.

com/#!/~olivierauverlot/TinyChat.

273

http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat
http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat

	Illustrations
	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Resources
	Conclusion

	Syntax summary
	Six reserved words only
	Reserved syntactic constructs
	Message Sending
	Three Types of Messages: Unary, Binary, and Keyword
	Message Precedence
	Cascade: Sending Muliple Messages to the Same Object
	Blocks
	Common Constructs: Conditionals
	Common Constructs: Loops/Iterators
	Files and Streams

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Add a repository
	Saving your package

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Conclusion

	Tests, tests and tests
	Writing a test in 2 minutes
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Write a test method
	Step 3: Run the test
	Step 4: Write more tests
	Step 5: Run all the tests
	Step 6: Alternative ways to execute tests
	Step 7: Looking at a bug
	Step 8: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to the superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes are known by their address
	Links are one-way connections between nodes
	Making our objects more understandable
	Simulating the steps of packet delivery
	Sending a packet
	Transmitting across a link
	The loopback link
	Modeling the network itself
	Connecting nodes.

	Looking up nodes
	Looking up links
	Final check.

	Packet delivery with forwarding
	Introducing a new kind of node
	Other examples of specialized nodes
	Workstations counting received packets
	Printers accumulating printouts
	Servers answering requests

	Conclusion

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

