
A living programming environment for a
living blockchain

by Santiago Bragagnolo - PharoDays - 2017
santiago.bragagnolo@gmail.com

santiago.bragagnolo@inria.fr
skype:santiago.bragagnolo

@sbragagnolo

mailto:santiago.bragagnolo@gmail.com?subject=
skype:santiago.bragagnolo

Disclaimer!

This is not a blockchain mechanisms talk!
(Sorry disappoint you :))

General technology
explanation

Starting by the fruit:
Smart contracts

• Digital reification of contracts

• Emulate the logic of contractual clauses

• Self-executing

• Self-enforcing

• Reduce transactional costs

• Minimise exceptions

Following by the branch:
Ethereum

• Blockchain based technology

• Open source & public network

• Smart contracts

• State stored in a blockchain

• Byte-code executed in the turing complete EVM

• Many development languages (solidity, serpent, etc)

Arriving to the trunk:
Blockchain

• Open and distributed ledger

• Records a constantly-growing list of transactions in between
two parties. (blocks)

• Resistant to modification by design

• Cryptocurrency: Paying to reinforce the social engagement
with the security

First-citizens in Blockchain
• Block: stamped batch of transactions

• Transaction: Representation of mutations of state

• Movements of money

• Method activation

• Account: Source and target of transactions (account in the accountancy
meaning)

• Contracts (Specific in ethereum)

So what? Architecture of a
proposed application

Pharo

Pharo: Why?
• Blockchain is a multiple actors always growing environment.

• Blockchain is a living environment

• Transactions move money (ether - bitcoin) from one place to other

• Transactions execute smart contracts

• Ethereum is a distributed runtime. Nothing better than a live environment for a
living distributed runtime.

• A lot of code analysis and inspection state-of-the-art tools

Fog

• Pharo client for the Ethereum client (GEth)

• github.com/sbragagnolo/Fog

http://github.com/sbragagnolo/Fog

Fog - features
• Connection, communication, marshalling, etc.

• Block fetching

• Query and create transactions

• Query and create contracts

• Remote method invocation

Fog - features
• Development support

• First-class citizen navigation (GT-Tools)

• Accounts

• Blocks

• Transactions

• Contracts

• Automatic contract mirror generation

• Automatic contract proxy building

Fog - features

• Cache

• General

• Connection

• Session

Some fancy slides :)

Block inspection
• Navigating blocks

• Inspecting blocks individually

• Overview of a collection of blocks through statistics

• Overview of the transactions of a collection of
blocks

Navigating in blocks

Blocks overview

Transactions overview

pragma solidity ^0.4.2;

contract StructTestContract {

 enum myenum { A, B, C }

 struct mystruct {
 bool boolean;
 myenum uservalue;
 uint32 commonvalue;
 }
 address _owner;
 bool bool1;
 int16 midint;
 mystruct simpleExample;
 bool bool2;
 mystruct[] arrayExample;

 function StructTestContract (){
 _owner = msg.sender;
 bool1 = true;
 bool2 = true;
 midint = 32;
 simpleExample.boolean = true;
 simpleExample.uservalue = myenum.B;
 simpleExample.commonvalue = 6355432;
 arrayExample.push(mystruct(true, myenum.A, 134));
 arrayExample.push(mystruct(false, myenum.B, 235));
 arrayExample.push(mystruct(true, myenum.C, 34));
 }
 function kill() {
 suicide(_owner);
 }

Contract source code

Inspecting contract

Inspecting structs

Yet to implement

Fog - Demo

Fog - future

• Finishing session management

• Events support

• Transactional message send recognition

• New AST Definition (Henrique Rocha)

THANKS :)!

by Santiago Bragagnolo - PharoDays - 2017
santiago.bragagnolo@gmail.com

santiago.bragagnolo@inria.fr
skype:santiago.bragagnolo

@sbragagnolo

mailto:santiago.bragagnolo@gmail.com?subject=
skype:santiago.bragagnolo

