
Pharo 64bits
by Esteban Lorenzano

Why we need 64bits Pharo?
• Because most systems nowadays are 64bits, and

while they offer 32bits compatibility, it is not the best
(special with linux, where compatibility may not be
trivial).

• Because applications need to allocate more than 2G
memory.

• Because not all libraries can be compiled/accessed
on 32bits versions.

• … and because otherwise we are behind history ;)

The OpenSmalltalk-VM
• All vm-dev collaborators re-united under the

“benevolent dictatorship” of Eliot (even if he
would reject that appellation).

• Eliot made most of 64bits JIT for Linux and
macOS

• Nicolas Cellier is working on the JIT for Windows

• Not trivial because in Windows sizeof(long) != 8

Bootstrap 64bits

• Pharo 6.0: Integration happens in 32bits and
then a process is executed to create a 64bits
image.

• Pharo 7.0: Both images will be bootstrapped
separately.

FFI 64bits
• FFI backend was moved early this year.

• Is different between platforms

• SysV: Linux, macOS

• Win64: Windows

• But both are done :)

UFFI 64bits

• UFFI was designed from scratch to be “64bits
compatible” (waiting for the right time)

• But we still need to adapt some things:

• Structures and offsets

• Structures and long sizes

UFFI and offsets
• Different sizes:

• 32bits:

• 64bits

• We need to calculate structure sizes each time
you start the image (on first execution), then
each structure also holds some
OFFSET_FIELDNAME variables.

UFFI and longs
• Windows sizeof(long) != Rest-of-the-world sizeof(long)

• Real problem of this is that FFI backend does not acknowledge
this difference (and in fact, atomic types on FFI are a bit “old”)
when dealing with structures.

• But since UFFI is a layer that happens before a FFI call, we can
do some nice stuff.

Migration
• Almost transparent (most things works “out of the box”)

• Possible problems:

• If you used long instead void*, this will not be right when
Windows VM 64bits will arrive.

• Some libraries have different structure definitions for each
platform. You will need to use a strategy to solve this.

• Some people/tools prefers to use #FFIInt32 instead plain
“int” or “long”. You need to be as close to the C definition
as possible.

Libraries currently supported

• All FFI functions in Pharo “just works”

• Athens

• SDL2

• libgit2: partially, to be finished soon(™)

Demo?

just play with it!

Thanks!

