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 started in late 2016 by Richard Uttner
 support of an existing application

– per documaps
– document management

 target:
– domain-specific solutions
– database-centric
– fat clients with platform-specific GUI
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 layers separation
 minimize redundancy, improve re-usability
 minimize work required for the UI and “glue” layers
 improve testability
 support for the common business application 

patterns
 ...

goals

production quality small business application in few days
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 modelling level:
– parts forming the “skeleton” of the application
– objects exposed by parts (conditions, values, actions)

 UI level:
– generic GUI clients of the framework
– application specific objects (widget, models,…)

 “glue” level:
–  arbitrary objects (startup, environment, use cases,...)

participants and roles
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Clients separation
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 data
 aspects (redirections)
 conditions

– a user can see the reason why something is disabled 
(APCondition on: [stringField size > 0] ifNot: #StringFieldIsEmpty) 
    & self enablementInputEnabled

 actions, triggers
 subpatrs

Parts
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 predefined parts (for lists, trees…)
 enumerations (combo-boxes, menus...)
 prompts, modal windows
 layouts
 Glorp
 Trachel

aPart
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 connected via:
– their creators (typically parts)
– framework condition objects
– part actions
– callbacks to parts maintaining separation from GUI

 do not reference parts, initialized with objects needed for 
running

 named callback requests (from the creator)

 workflow editor

use cases
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 typically just GUI clients
 headless clients, forwarding clients…
 particularly useful for tests
 aPart entities with native support of state changes 

records
 recording client

clients
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 open recording client on your part with 
SUTAPInteractionPrinter, manual interaction

 use the generated SUnit test code
 unit tests repeat the interactions, check states
 prompts/multiple windows support

automatic unit tests code generation

self afterDoing: [
self setAspect: #stringField value: 'foo'. ]

expectStates: [
APExpectedStates

expectAllInactive: #(#clearNumber #confirmNumber #saveData)
expectAllActive: #(#clearString #confirmString 

                    #disableInput #intField #stringField) ].
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 developers should prefer the framework
 not always the most straightforward solution

framework usage
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framework usage
 locate functionality?
 dependencies?
 estimations?
 impacts?

 plan
 tools
 additional effort
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 from VisualWorks
 part of porting of per documaps application
 close collaboration with Pharo Consortium and 

INRIA (RMoD)

port to
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 Language differences
– namespaces

Store.Model
UI.Model

– qualified literals
#{UI.CheckBoxSpec} 

– FFI calls
<C:typedef int64_t (*callb_after_send_t)(unsigned char* handlerID, 
int PortServerID, unsigned char* inputBuffer, int cbInput)>

Challenges
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Challenges
 Semantics differences 

– object initialization (new)
● inherit from class that behave differently

– same methods with different behavior (Pragma>>#selector)
– dependencies mechanism
– (#Smalltalk = 'Smalltalk') = false

– 'asdf' readStream upToAll: 'd'; upToEnd
● 'f' in Pharo, 'df' in VW

– and many more…
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Challenges
 Different code management tools, source formats

– VW: Store, XML
– Pharo: Git

 Completely different UI framework
– UI Painter, different data flow

● VW: Aspect adaptors
● Pharo: Value holders
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Challenges
 Application strongly Windows oriented

– first-and-half-class citizen in Pharo

 Application still under active development
– bi-directional transformation

 Target platform under active development
– Spec2 
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Why should you care?

 Most of us will port applications to Pharo

...if you are lucky, from some older Pharo version
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Approach
 export code from VW in XML form (*.pst)

(not stable order, unusable for versioning)
 import into Ring2 model

– modified scanner & parser
 apply well known code transformations
 store VW metadata (for reverse direction)
 save Ring2 model in Tonel format
 manage with Git
 load into Pharo
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Tests!

 with so many small hidden incompatibilities, 
tests are absolutely necessary

 good code coverage, mutation testing, UI tests
 cheap in long term
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UI layers adoption
 VisualWorks

 Pharo
– “compatible” 

ApplicationModel

– UIBuilder replacement
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Future
 aPart Framework will be open-sourced
 native UI with Spec2 (GTK)
 full-featured reference example including database 

handling with Glorp
 extended documentation
 workflow editor...
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the side-effect of 
SCHMIDT, Pharo Consortium and INRIA 

collaboration

for you business

better
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