
05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 started in late 2016 by Richard Uttner
 support of an existing application

– per documaps
– document management

 target:
– domain-specific solutions
– database-centric
– fat clients with platform-specific GUI

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 layers separation
 minimize redundancy, improve re-usability
 minimize work required for the UI and “glue” layers
 improve testability
 support for the common business application

patterns
 ...

goals

production quality small business application in few days

05.04.2019 Pavel Krivanek

 modelling level:
– parts forming the “skeleton” of the application
– objects exposed by parts (conditions, values, actions)

 UI level:
– generic GUI clients of the framework
– application specific objects (widget, models,…)

 “glue” level:
– arbitrary objects (startup, environment, use cases,...)

participants and roles

05.04.2019 Pavel Krivanek

Clients separation

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 data
 aspects (redirections)
 conditions

– a user can see the reason why something is disabled
(APCondition on: [stringField size > 0] ifNot: #StringFieldIsEmpty)
 & self enablementInputEnabled

 actions, triggers
 subpatrs

Parts

05.04.2019 Pavel Krivanek

 predefined parts (for lists, trees…)
 enumerations (combo-boxes, menus...)
 prompts, modal windows
 layouts
 Glorp
 Trachel

aPart

05.04.2019 Pavel Krivanek

 connected via:
– their creators (typically parts)
– framework condition objects
– part actions
– callbacks to parts maintaining separation from GUI

 do not reference parts, initialized with objects needed for
running

 named callback requests (from the creator)

 workflow editor

use cases

05.04.2019 Pavel Krivanek

 typically just GUI clients
 headless clients, forwarding clients…
 particularly useful for tests
 aPart entities with native support of state changes

records
 recording client

clients

05.04.2019 Pavel Krivanek

 open recording client on your part with
SUTAPInteractionPrinter, manual interaction

 use the generated SUnit test code
 unit tests repeat the interactions, check states
 prompts/multiple windows support

automatic unit tests code generation

self afterDoing: [
self setAspect: #stringField value: 'foo'.]

expectStates: [
APExpectedStates

expectAllInactive: #(#clearNumber #confirmNumber #saveData)
expectAllActive: #(#clearString #confirmString

 #disableInput #intField #stringField)].

05.04.2019 Pavel Krivanek

 developers should prefer the framework
 not always the most straightforward solution

framework usage

05.04.2019 Pavel Krivanek

framework usage
 locate functionality?
 dependencies?
 estimations?
 impacts?

 plan
 tools
 additional effort

05.04.2019 Pavel Krivanek

 from VisualWorks
 part of porting of per documaps application
 close collaboration with Pharo Consortium and

INRIA (RMoD)

port to

05.04.2019 Pavel Krivanek

 Language differences
– namespaces

Store.Model
UI.Model

– qualified literals
#{UI.CheckBoxSpec}

– FFI calls
<C:typedef int64_t (*callb_after_send_t)(unsigned char* handlerID,
int PortServerID, unsigned char* inputBuffer, int cbInput)>

Challenges

05.04.2019 Pavel Krivanek

Challenges
 Semantics differences

– object initialization (new)
● inherit from class that behave differently

– same methods with different behavior (Pragma>>#selector)
– dependencies mechanism
– (#Smalltalk = 'Smalltalk') = false

– 'asdf' readStream upToAll: 'd'; upToEnd
● 'f' in Pharo, 'df' in VW

– and many more…

05.04.2019 Pavel Krivanek

Challenges
 Different code management tools, source formats

– VW: Store, XML
– Pharo: Git

 Completely different UI framework
– UI Painter, different data flow

● VW: Aspect adaptors
● Pharo: Value holders

05.04.2019 Pavel Krivanek

Challenges
 Application strongly Windows oriented

– first-and-half-class citizen in Pharo

 Application still under active development
– bi-directional transformation

 Target platform under active development
– Spec2

05.04.2019 Pavel Krivanek

Why should you care?

 Most of us will port applications to Pharo

...if you are lucky, from some older Pharo version

05.04.2019 Pavel Krivanek

Approach
 export code from VW in XML form (*.pst)

(not stable order, unusable for versioning)
 import into Ring2 model

– modified scanner & parser
 apply well known code transformations
 store VW metadata (for reverse direction)
 save Ring2 model in Tonel format
 manage with Git
 load into Pharo

05.04.2019 Pavel Krivanek

Tests!

 with so many small hidden incompatibilities,
tests are absolutely necessary

 good code coverage, mutation testing, UI tests
 cheap in long term

05.04.2019 Pavel Krivanek

UI layers adoption
 VisualWorks

 Pharo
– “compatible”

ApplicationModel

– UIBuilder replacement

05.04.2019 Pavel Krivanek

Future
 aPart Framework will be open-sourced
 native UI with Spec2 (GTK)
 full-featured reference example including database

handling with Glorp
 extended documentation
 workflow editor...

05.04.2019 Pavel Krivanek

the side-effect of
SCHMIDT, Pharo Consortium and INRIA

collaboration

for you business

better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

