
05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 started in late 2016 by Richard Uttner
 support of an existing application

– per documaps
– document management

 target:
– domain-specific solutions
– database-centric
– fat clients with platform-specific GUI

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 layers separation
 minimize redundancy, improve re-usability
 minimize work required for the UI and “glue” layers
 improve testability
 support for the common business application

patterns
 ...

goals

production quality small business application in few days

05.04.2019 Pavel Krivanek

 modelling level:
– parts forming the “skeleton” of the application
– objects exposed by parts (conditions, values, actions)

 UI level:
– generic GUI clients of the framework
– application specific objects (widget, models,…)

 “glue” level:
– arbitrary objects (startup, environment, use cases,...)

participants and roles

05.04.2019 Pavel Krivanek

Clients separation

05.04.2019 Pavel Krivanek

05.04.2019 Pavel Krivanek

 data
 aspects (redirections)
 conditions

– a user can see the reason why something is disabled
(APCondition on: [stringField size > 0] ifNot: #StringFieldIsEmpty)
 & self enablementInputEnabled

 actions, triggers
 subpatrs

Parts

05.04.2019 Pavel Krivanek

 predefined parts (for lists, trees…)
 enumerations (combo-boxes, menus...)
 prompts, modal windows
 layouts
 Glorp
 Trachel

aPart

05.04.2019 Pavel Krivanek

 connected via:
– their creators (typically parts)
– framework condition objects
– part actions
– callbacks to parts maintaining separation from GUI

 do not reference parts, initialized with objects needed for
running

 named callback requests (from the creator)

 workflow editor

use cases

05.04.2019 Pavel Krivanek

 typically just GUI clients
 headless clients, forwarding clients…
 particularly useful for tests
 aPart entities with native support of state changes

records
 recording client

clients

05.04.2019 Pavel Krivanek

 open recording client on your part with
SUTAPInteractionPrinter, manual interaction

 use the generated SUnit test code
 unit tests repeat the interactions, check states
 prompts/multiple windows support

automatic unit tests code generation

self afterDoing: [
self setAspect: #stringField value: 'foo'.]

expectStates: [
APExpectedStates

expectAllInactive: #(#clearNumber #confirmNumber #saveData)
expectAllActive: #(#clearString #confirmString

 #disableInput #intField #stringField)].

05.04.2019 Pavel Krivanek

 developers should prefer the framework
 not always the most straightforward solution

framework usage

05.04.2019 Pavel Krivanek

framework usage
 locate functionality?
 dependencies?
 estimations?
 impacts?

 plan
 tools
 additional effort

05.04.2019 Pavel Krivanek

 from VisualWorks
 part of porting of per documaps application
 close collaboration with Pharo Consortium and

INRIA (RMoD)

port to

05.04.2019 Pavel Krivanek

 Language differences
– namespaces

Store.Model
UI.Model

– qualified literals
#{UI.CheckBoxSpec}

– FFI calls
<C:typedef int64_t (*callb_after_send_t)(unsigned char* handlerID,
int PortServerID, unsigned char* inputBuffer, int cbInput)>

Challenges

05.04.2019 Pavel Krivanek

Challenges
 Semantics differences

– object initialization (new)
● inherit from class that behave differently

– same methods with different behavior (Pragma>>#selector)
– dependencies mechanism
– (#Smalltalk = 'Smalltalk') = false

– 'asdf' readStream upToAll: 'd'; upToEnd
● 'f' in Pharo, 'df' in VW

– and many more…

05.04.2019 Pavel Krivanek

Challenges
 Different code management tools, source formats

– VW: Store, XML
– Pharo: Git

 Completely different UI framework
– UI Painter, different data flow

● VW: Aspect adaptors
● Pharo: Value holders

05.04.2019 Pavel Krivanek

Challenges
 Application strongly Windows oriented

– first-and-half-class citizen in Pharo

 Application still under active development
– bi-directional transformation

 Target platform under active development
– Spec2

05.04.2019 Pavel Krivanek

Why should you care?

 Most of us will port applications to Pharo

...if you are lucky, from some older Pharo version

05.04.2019 Pavel Krivanek

Approach
 export code from VW in XML form (*.pst)

(not stable order, unusable for versioning)
 import into Ring2 model

– modified scanner & parser
 apply well known code transformations
 store VW metadata (for reverse direction)
 save Ring2 model in Tonel format
 manage with Git
 load into Pharo

05.04.2019 Pavel Krivanek

Tests!

 with so many small hidden incompatibilities,
tests are absolutely necessary

 good code coverage, mutation testing, UI tests
 cheap in long term

05.04.2019 Pavel Krivanek

UI layers adoption
 VisualWorks

 Pharo
– “compatible”

ApplicationModel

– UIBuilder replacement

05.04.2019 Pavel Krivanek

Future
 aPart Framework will be open-sourced
 native UI with Spec2 (GTK)
 full-featured reference example including database

handling with Glorp
 extended documentation
 workflow editor...

05.04.2019 Pavel Krivanek

the side-effect of
SCHMIDT, Pharo Consortium and INRIA

collaboration

for you business

better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

