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Goal of today

 Show what can be done in plain Pharo related to 
neural network
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These slides…

 … are a support for the TechTalk 

 … are not meant to be understandable when read 
offline 

 … are a summary of a lecture given at the University 
of Chile 

 … incremental in their content 

 … do not assume any theoretical knowledge (even if 
some slides are scary)
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Gofer it
    smalltalkhubUser: 'abergel' project: 'NeuralNetworks';
    configurationOf: 'NeuralNetworks';
    loadDevelopment



Outline

1. Perceptron 

2. Learning Perceptron 

3. Sigmoid Neuron 

4. Neural Network 

5. Classifying some data
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Perceptron
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Dendrite: propagate electrochemical stimulation received from 
other neural cells 

Axon: conducts electrical impulses away from the neuron



Perceptron

 A perceptron is a kind of artificial neuron 

 Developed in the 50s and 60s by Frank Rosenblatt, 
Warren McCulloch, Walter Pitts
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 Takes several binary inputs, x1, x2, … and produces 
a single binary output

output

x1

x2

x3



Perceptron

 The output of a perceptron is the weighted sum of 
the input
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 if the weighted sum is greater than t, then we fire 1
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Perceptron

 This is how a perceptron works. A perceptron is a 
device that makes decisions by weighing up evidence

10

output

x1

x2

x3

w2
w1

w3
t



Perceptron

 Suppose there is a great metal concert this weekend 

 You love metal, and you are wondering if you should 
go or not to the concert 

 You may want to make your decision by weighing up 
three factors: 

 Is the weather good?


 Does your brother/sister/{boy,girl}friend want to accompany you?


 Is the festival near a metro stop? (You do not like driving)
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Perceptron

 Suppose there is a great metal concert this weekend 

 You love metal, and you are wondering if you should 
go or not to the concert 

 You may want to make your decision by weighing up 
three factors: 

 Is the weather good?


 Does your brother/sister/{boy,girl}friend want to accompany you?


 Is the festival near a metro stop? (You do not like driving)
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Perceptron

 Is the weather good?


 Does your brother/sister/{boy,girl}friend want to accompany you?


 Is the festival near a metro stop? (You do not like driving)


 If you are a true-metal lover who love to share, then 
you may want to go even if the weather is bad and 
there is no stop near-by. 

 In that case, w1 = 2, w2 = 6, w3 = 2
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Perceptron

 Is the weather good?


 Does your brother/sister/{boy,girl}friend want to accompany you?


 Is the festival near a metro stop? (You do not like driving)


 … or if you wish to not weak up your parents late in 
the evening: w1 = 1, w2 = 1, w3 = 8
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Perceptron

 We are using the perceptron to model a simple 
decision-making. 

 If we pick 5 as our threshold, then we have the 
following condition: 

(x1 * w1) + (x2 * w2) + (x3 * w3)  >= 5 

 If the condition is true, then the perceptron outputs 1, 
else it output 0
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Perceptron

 Varying the weights and the threshold produces a 
new model of decision-making 

 Is the weather good?


 Does your brother/sister/{boy,girl}friend want to accompany you?


 Is the festival near a metro stop? (You do not like driving)
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x1
x2
x3

 w1 = 2 
 w2 = 6 
 w3 = 2 
 t = 5

 w1 = 2 
 w2 = 6 
 w3 = 2 
 t = 2

Decreasing t means that you are more willing to the metal party



Adapting the perceptron

 We can move the threshold to the other side of the 
equation: threshold is now named bias 

(x1 * w1) + (x2 * w2) + (x3 * w3)       >= 5 
(x1 * w1) + (x2 * w2) + (x3 * w3)  - 5 >= 0 

 The perception can be rewritten 
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We want some code!

18

Object subclass: #MPPerceptron
instanceVariableNames: 'weights bias’
classVariableNames: ''
package: 'NeuralNetworks-Core'

MPPerceptron>>feed: inputs
| r tmp |

   tmp := inputs with: weights collect: [ :x :w | x * w ].
r := tmp sum + bias.
output := r > 0 ifTrue: [ 1 ] ifFalse: [ 0 ].
^ output



Formulating logical equation

 AND, OR, NAND are elementary logical function 

 Consider the following perceptron:
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 With 00 (shortcut for x1 = 0, x2 = 0) produces the 
output 1, since (-2)*0 + (-2)*0 + 3 = 3, which is positive 

 The input 01 and 10 produces 1. But 11 produces -1, 
which is negative. Our perceptron implements a NAND 
gate.
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Learning Perceptron



Perceptron learning algorithm (1/3)

 During the training period, a series of inputs are 
presented to the perceptron 

 Each input follows x = (x1, x2, …, xN)


 For each input set, there is a desired output (0 or 1) 

 The actual output is determined by w*x + b 

 If the actual output is wrong, then two things could 
have happened:
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Perceptron learning algorithm (2/3)

 The designed output is 0, but the actual input is 
above the threshold. So the actual output becomes 1 

 In such a case, we should decrease the weights 

 The decrease in weight should be proportional to the 
input. 

 wN = wN - C*xN 

 b := b - C 

 C is a constant, let’s pick 0.01 
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Perceptron learning algorithm (3/3)

 The other case when the perceptron makes a 
mistake is when the desired output is 1, but the actual 
input is below the threshold 

 We should increase the weights 

 wN = wN + C*xN 

 b := b + C 
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Perceptron>>train: inputs desiredOutput: desiredOutput
| c newWeights output |
output := self feed: inputs.
c := 0.1.
"Works well"
desiredOutput = output

ifTrue: [ ^ self ].

"Basic check"
self assert: [ weights size = inputs size ] description: 'Wrong size'.

desiredOutput = 0
ifTrue: [ "we should decrease the weight"

newWeights := (1 to: weights size) 
   collect: [ :i | (weights at: i) - (c * (inputs at: i)) ].

bias := bias - c ]
ifFalse: [ "We have: designedOutput = 1"

newWeights := (1 to: weights size) 
   collect: [ :i | (weights at: i) + (c * (inputs at: i)) ].

bias := bias + c ].
weights := newWeights
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testBasicLearning

| p |
p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: 0.5.

100 timesRepeat: [  
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 1.
].

self assert: (p feed: { 0 . 0}) equals: 0.
self assert: (p feed: { 0 . 1}) equals: 1.
self assert: (p feed: { 1 . 0}) equals: 1.
self assert: (p feed: { 1 . 1}) equals: 1.
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(1 to: 100) collect: [ :i |

p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [  
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 1.
].

error := 
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error ]
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Sigmoid Neuron



Problem with the perceptron

 When learning from a small error, a big change can 
occurs in the output 

 => And that is a big problem
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((1 to: 1000) collect: [ :i |
f := [ :x | x * -2 - 40 ].
r := Random new seed: 42.

p := MPPerceptron  new.
p weights: { -1 . -1 }.
p bias: -0.5.

i timesRepeat: [ 
x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [ 1 ] ifFalse: [ 0 ].
p train: { x . y } desiredOutput: o.
].

error := 0.
100 timesRepeat: [ 

x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [ 1 ] ifFalse: [ 0 ].
error := error + (o - (p feed: { x . y })) abs.

].
error := error / 100.
error := error asFloat round: 2.
error ]) plot
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((1 to: 1000) collect: [ :i |
f := [ :x | x * -2 - 40 ].
r := Random new seed: 42.

p := MPPerceptron  new.
p weights: { -1 . -1 }.
p bias: -0.5.

i timesRepeat: [ 
x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [ 1 ] ifFalse: [ 0 ].
p train: { x . y } desiredOutput: o.
].

error := 0.
100 timesRepeat: [ 

x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [ 1 ] ifFalse: [ 0 ].
error := error + (o - (p feed: { x . y })) abs.

].
error := error / 100.
error := error asFloat round: 2.
error ]) plot



Perceptron
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Perceptron
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Changes too abrupt



Sigmoid neuron
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Without abrupt changes,  
our neuron will be able  

to learn correctly



Sigmoid Neuron

 To summarize, the output of a sigmoid neuron is
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MPNeuron>>feed: inputs
| z |
self assert: [ inputs isCollection ] description: 'Should be a 

collection'.
self assert: [ inputs size = weights size ] description: 'Input 

should have the same size then the weights’.

z := (inputs with: weights collect: [ :x :w | x * w ]) sum + bias .
output := 1 / (1 + z negated exp).
^ output
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MPNeuron>>train: inputs desiredOutput: desiredOutput
| learningRate theError output delta |
output := self feed: inputs.
learningRate := 0.5.

theError := desiredOutput - output.
delta := (theError * (output * (1.0 - output))).

inputs withIndexDo: [ :anInput :index | 
weights at: index put: 
((weights at: index) + (learningRate * delta * anInput)) ].

bias := bias + (learningRate * delta)
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Neural Network



Limitation of a neuron

 We have seen how to train a neuron and perceptron 
with a NAND, OR, AND logical gate 

 Let’s try with a XOR
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((1 to: 500) collect: [ :i |

p := MPNeuron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [  
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 0.
].

error := 
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error ]) plot
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((1 to: 500) collect: [ :i |

p := MPNeuron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [  
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 0.
].

error := 
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error ]) plot



Limitation of a neuron

 Our neuron cannot learn something as complex as a 
XOR logical gate 

 This is an example of why we need something more 
powerful than a single neuron
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Network of neuron

 A network has the following structure
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Network of neuron

 A network has the following structure
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Layers



Network of neuron

 A network has the following structure
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Output layer 
(This example shows only one output neuron,  

but we could have many)



Network of neuron

 A network has the following structure
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Input layer



Network of neuron

 A network has the following structure
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Hidden layers
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((1 to: 10000 by: 250) collect: [ :i |

p := NeuralNetwork new.
p configure: 2 numberOfHidden: 2 nbOfOutput: 1.

i timesRepeat: [  
p train: { 0 . 0} desiredOutput: {0}.
p train: { 0 . 1} desiredOutput: {1}.
p train: { 1 . 0} desiredOutput: {1}.
p train: { 1 . 1} desiredOutput: {0}.
].

error := 
((0 - (p feed: { 0 . 0}) first) abs +
(1 - (p feed: { 0 . 1}) first) abs +
(1 - (p feed: { 1 . 0}) first ) abs +
(0 - (p feed: { 1 . 1}) first) abs) / 4.

error := error asFloat round: 2.
error ]) plot
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((1 to: 10000 by: 250) collect: [ :i |

p := NeuralNetwork new.
p configure: 2 numberOfHidden: 2 nbOfOutput: 1.

i timesRepeat: [  
p train: { 0 . 0} desiredOutput: {0}.
p train: { 0 . 1} desiredOutput: {1}.
p train: { 1 . 0} desiredOutput: {1}.
p train: { 1 . 1} desiredOutput: {0}.
].

error := 
((0 - (p feed: { 0 . 0}) first) abs +
(1 - (p feed: { 0 . 1}) first) abs +
(1 - (p feed: { 1 . 0}) first ) abs +
(0 - (p feed: { 1 . 1}) first) abs) / 4.

error := error asFloat round: 2.
error ]) plot
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Classifying some data
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Iris
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1. Title: Iris Plants Database
Updated Sept 21 by C.Blake - Added discrepency information

2. Sources:
     (a) Creator: R.A. Fisher
     (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
     (c) Date: July, 1988

3. Past Usage:
   - Publications: too many to mention!!!  Here are a few.
   1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
      Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
      to Mathematical Statistics" (John Wiley, NY, 1950).
   2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
      (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
      Structure and Classification Rule for Recognition in Partially Exposed
      Environments".  IEEE Transactions on Pattern Analysis and Machine
      Intelligence, Vol. PAMI-2, No. 1, 67-71.
      -- Results:
         -- very low misclassification rates (0% for the setosa class)
   4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE 
      Transactions on Information Theory, May 1972, 431-433.
      -- Results:
         -- very low misclassification rates again
   5. See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al's AUTOCLASS II
      conceptual clustering system finds 3 classes in the data.

4. Relevant Information:
   --- This is perhaps the best known database to be found in the pattern
       recognition literature.  Fisher's paper is a classic in the field
       and is referenced frequently to this day.  (See Duda & Hart, for
       example.)  The data set contains 3 classes of 50 instances each,
       where each class refers to a type of iris plant.  One class is
       linearly separable from the other 2; the latter are NOT linearly
       separable from each other.
   --- Predicted attribute: class of iris plant.
   --- This is an exceedingly simple domain.



Iris dataset

 Obtained from: 

 https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
iris.data


 Description of the values: 
 https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
iris.names
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g := RTGrapher new.

d := RTData new.
d dotShape 

if: [ :row | row last = 'Iris-setosa' ] fillColor: Color blue;
if: [ :row | row last = 'Iris-versicolor' ] fillColor: Color white;
if: [ :row | row last = 'Iris-virginica' ] fillColor: Color green.

d points: NNDataset new irisDataset.
d x: #first.
d y: #third.
g add: d.

g 
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| b data block d lb |
data := RTTabTable new input: (TRPlatform current downloadContent: 'http://mbostock.github.io/d3/
talk/20111116/iris.csv') usingDelimiter: $,.
data 
    removeFirstRow;
    convertColumns: #( 2 3 4 5) to: #asNumber.

b := RTScatterplotMatrix new.

b objects: data values.

block := [ :n | n == n asInteger 
    ifTrue: [ n asInteger ] 
    ifFalse: [ n asFloat ] ].
b axisX 
    numberOfTicks: 5;
    rotateLabels;
    labelConversion: block.
b axisY 
    numberOfTicks: 5;
    labelConversion: block.

b lineShape: (RTStyledMultiLine new
    dashedLine;
    width: 0.5; yourself
    ).

d := Dictionary new
    at: 'setosa' put: Color red;
    at: 'versicolor' put: Color green;
    at: 'virginica' put: Color blue; yourself.
b shape circle
    size: 3.5;
    color: [ :a | d at: a first ].

b metrics
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dataSet := NNDataset new irisDatasetWithNumericalLast.
dataSet := dataSet shuffled.
cut := (dataSet size * 0.5) asInteger.
dataSetTraining := dataSet first: cut.
dataSetGuessing := dataSet last: (dataSet size - cut).

p := NeuralNetwork new.
p configure: 4 numberOfHidden: 5 nbOfOutput: 3.

p train: dataSetTraining nbEpoch: 2000.

precision := (dataSetGuessing select: [ :row |
(p predict: row allButLast) = row last ]) size / dataSetGuessing size.

'Prediction of precision = ', (((precision round: 4) * 100) asString), '%'

Prediction of precision = 96.0%


