
TechTalk on
Artificial Intelligence

— A practical approach to Neural Networks —

Alexandre Bergel
University of Chile, Object Profile

http://bergel.eu

Goal of today

 Show what can be done in plain Pharo related to
neural network

2

These slides…

 … are a support for the TechTalk

 … are not meant to be understandable when read
offline

 … are a summary of a lecture given at the University
of Chile

 … incremental in their content

 … do not assume any theoretical knowledge (even if
some slides are scary)

3

4

Gofer it
 smalltalkhubUser: 'abergel' project: 'NeuralNetworks';
 configurationOf: 'NeuralNetworks';
 loadDevelopment

Outline

1. Perceptron

2. Learning Perceptron

3. Sigmoid Neuron

4. Neural Network

5. Classifying some data

5

6

Perceptron

7

Dendrite: propagate electrochemical stimulation received from
other neural cells

Axon: conducts electrical impulses away from the neuron

Perceptron

 A perceptron is a kind of artificial neuron

 Developed in the 50s and 60s by Frank Rosenblatt,
Warren McCulloch, Walter Pitts

8

 Takes several binary inputs, x1, x2, … and produces
a single binary output

output

x1

x2

x3

Perceptron

 The output of a perceptron is the weighted sum of
the input

9

 if the weighted sum is greater than t, then we fire 1

output

x1

x2

x3

w2
w1

w3
t

Perceptron

 This is how a perceptron works. A perceptron is a
device that makes decisions by weighing up evidence

10

output

x1

x2

x3

w2
w1

w3
t

Perceptron

 Suppose there is a great metal concert this weekend

 You love metal, and you are wondering if you should
go or not to the concert

 You may want to make your decision by weighing up
three factors:

 Is the weather good?

 Does your brother/sister/{boy,girl}friend want to accompany you?

 Is the festival near a metro stop? (You do not like driving)

11

Perceptron

 Suppose there is a great metal concert this weekend

 You love metal, and you are wondering if you should
go or not to the concert

 You may want to make your decision by weighing up
three factors:

 Is the weather good?

 Does your brother/sister/{boy,girl}friend want to accompany you?

 Is the festival near a metro stop? (You do not like driving)

12

x1
x2
x3

Perceptron

 Is the weather good?

 Does your brother/sister/{boy,girl}friend want to accompany you?

 Is the festival near a metro stop? (You do not like driving)

 If you are a true-metal lover who love to share, then
you may want to go even if the weather is bad and
there is no stop near-by.

 In that case, w1 = 2, w2 = 6, w3 = 2

13

x1
x2
x3

Perceptron

 Is the weather good?

 Does your brother/sister/{boy,girl}friend want to accompany you?

 Is the festival near a metro stop? (You do not like driving)

 … or if you wish to not weak up your parents late in
the evening: w1 = 1, w2 = 1, w3 = 8

14

x1
x2
x3

Perceptron

 We are using the perceptron to model a simple
decision-making.

 If we pick 5 as our threshold, then we have the
following condition:

(x1 * w1) + (x2 * w2) + (x3 * w3) >= 5

 If the condition is true, then the perceptron outputs 1,
else it output 0

15

Perceptron

 Varying the weights and the threshold produces a
new model of decision-making

 Is the weather good?

 Does your brother/sister/{boy,girl}friend want to accompany you?

 Is the festival near a metro stop? (You do not like driving)

16

x1
x2
x3

 w1 = 2
 w2 = 6
 w3 = 2
 t = 5

 w1 = 2
 w2 = 6
 w3 = 2
 t = 2

Decreasing t means that you are more willing to the metal party

Adapting the perceptron

 We can move the threshold to the other side of the
equation: threshold is now named bias

(x1 * w1) + (x2 * w2) + (x3 * w3) >= 5
(x1 * w1) + (x2 * w2) + (x3 * w3) - 5 >= 0

 The perception can be rewritten

17

We want some code!

18

Object subclass: #MPPerceptron
instanceVariableNames: 'weights bias’
classVariableNames: ''
package: 'NeuralNetworks-Core'

MPPerceptron>>feed: inputs
| r tmp |

 tmp := inputs with: weights collect: [:x :w | x * w].
r := tmp sum + bias.
output := r > 0 ifTrue: [1] ifFalse: [0].
^ output

Formulating logical equation

 AND, OR, NAND are elementary logical function

 Consider the following perceptron:

19

 With 00 (shortcut for x1 = 0, x2 = 0) produces the
output 1, since (-2)*0 + (-2)*0 + 3 = 3, which is positive

 The input 01 and 10 produces 1. But 11 produces -1,
which is negative. Our perceptron implements a NAND
gate.

20

Learning Perceptron

Perceptron learning algorithm (1/3)

 During the training period, a series of inputs are
presented to the perceptron

 Each input follows x = (x1, x2, …, xN)

 For each input set, there is a desired output (0 or 1)

 The actual output is determined by w*x + b

 If the actual output is wrong, then two things could
have happened:

21

Perceptron learning algorithm (2/3)

 The designed output is 0, but the actual input is
above the threshold. So the actual output becomes 1

 In such a case, we should decrease the weights

 The decrease in weight should be proportional to the
input.

 wN = wN - C*xN

 b := b - C

 C is a constant, let’s pick 0.01

22

Perceptron learning algorithm (3/3)

 The other case when the perceptron makes a
mistake is when the desired output is 1, but the actual
input is below the threshold

 We should increase the weights

 wN = wN + C*xN

 b := b + C

23

24

Perceptron>>train: inputs desiredOutput: desiredOutput
| c newWeights output |
output := self feed: inputs.
c := 0.1.
"Works well"
desiredOutput = output

ifTrue: [^ self].

"Basic check"
self assert: [weights size = inputs size] description: 'Wrong size'.

desiredOutput = 0
ifTrue: ["we should decrease the weight"

newWeights := (1 to: weights size)
 collect: [:i | (weights at: i) - (c * (inputs at: i))].

bias := bias - c]
ifFalse: ["We have: designedOutput = 1"

newWeights := (1 to: weights size)
 collect: [:i | (weights at: i) + (c * (inputs at: i))].

bias := bias + c].
weights := newWeights

25

testBasicLearning

| p |
p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: 0.5.

100 timesRepeat: [
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 1.
].

self assert: (p feed: { 0 . 0}) equals: 0.
self assert: (p feed: { 0 . 1}) equals: 1.
self assert: (p feed: { 1 . 0}) equals: 1.
self assert: (p feed: { 1 . 1}) equals: 1.

26

(1 to: 100) collect: [:i |

p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 1.
].

error :=
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error]

27

28

Sigmoid Neuron

Problem with the perceptron

 When learning from a small error, a big change can
occurs in the output

 => And that is a big problem

29

30

((1 to: 1000) collect: [:i |
f := [:x | x * -2 - 40].
r := Random new seed: 42.

p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: -0.5.

i timesRepeat: [
x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [1] ifFalse: [0].
p train: { x . y } desiredOutput: o.
].

error := 0.
100 timesRepeat: [

x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [1] ifFalse: [0].
error := error + (o - (p feed: { x . y })) abs.

].
error := error / 100.
error := error asFloat round: 2.
error]) plot

31

((1 to: 1000) collect: [:i |
f := [:x | x * -2 - 40].
r := Random new seed: 42.

p := MPPerceptron new.
p weights: { -1 . -1 }.
p bias: -0.5.

i timesRepeat: [
x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [1] ifFalse: [0].
p train: { x . y } desiredOutput: o.
].

error := 0.
100 timesRepeat: [

x := (r nextInt: 100) - 50.
y := f value: x.
o := (y >= 0) ifTrue: [1] ifFalse: [0].
error := error + (o - (p feed: { x . y })) abs.

].
error := error / 100.
error := error asFloat round: 2.
error]) plot

Perceptron

32

Perceptron

33

Changes too abrupt

Sigmoid neuron

34

Without abrupt changes,
our neuron will be able

to learn correctly

Sigmoid Neuron

 To summarize, the output of a sigmoid neuron is

35

36

MPNeuron>>feed: inputs
| z |
self assert: [inputs isCollection] description: 'Should be a

collection'.
self assert: [inputs size = weights size] description: 'Input

should have the same size then the weights’.

z := (inputs with: weights collect: [:x :w | x * w]) sum + bias .
output := 1 / (1 + z negated exp).
^ output

37

MPNeuron>>train: inputs desiredOutput: desiredOutput
| learningRate theError output delta |
output := self feed: inputs.
learningRate := 0.5.

theError := desiredOutput - output.
delta := (theError * (output * (1.0 - output))).

inputs withIndexDo: [:anInput :index |
weights at: index put:
((weights at: index) + (learningRate * delta * anInput))].

bias := bias + (learningRate * delta)

38

Neural Network

Limitation of a neuron

 We have seen how to train a neuron and perceptron
with a NAND, OR, AND logical gate

 Let’s try with a XOR

39

40

((1 to: 500) collect: [:i |

p := MPNeuron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 0.
].

error :=
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error]) plot

41

((1 to: 500) collect: [:i |

p := MPNeuron new.
p weights: { -1 . -1 }.
p bias: 0.5.

i timesRepeat: [
p train: { 0 . 0} desiredOutput: 0.
p train: { 0 . 1} desiredOutput: 1.
p train: { 1 . 0} desiredOutput: 1.
p train: { 1 . 1} desiredOutput: 0.
].

error :=
((0 - (p feed: { 0 . 0})) abs +
(1 - (p feed: { 0 . 1})) abs +
(1 - (p feed: { 1 . 0})) abs +
(1 - (p feed: { 1 . 1})) abs) / 4.

error := error asFloat round: 2.
error]) plot

Limitation of a neuron

 Our neuron cannot learn something as complex as a
XOR logical gate

 This is an example of why we need something more
powerful than a single neuron

42

Network of neuron

 A network has the following structure

43

Network of neuron

 A network has the following structure

44

Layers

Network of neuron

 A network has the following structure

45

Output layer
(This example shows only one output neuron,

but we could have many)

Network of neuron

 A network has the following structure

46

Input layer

Network of neuron

 A network has the following structure

47

Hidden layers

48

((1 to: 10000 by: 250) collect: [:i |

p := NeuralNetwork new.
p configure: 2 numberOfHidden: 2 nbOfOutput: 1.

i timesRepeat: [
p train: { 0 . 0} desiredOutput: {0}.
p train: { 0 . 1} desiredOutput: {1}.
p train: { 1 . 0} desiredOutput: {1}.
p train: { 1 . 1} desiredOutput: {0}.
].

error :=
((0 - (p feed: { 0 . 0}) first) abs +
(1 - (p feed: { 0 . 1}) first) abs +
(1 - (p feed: { 1 . 0}) first) abs +
(0 - (p feed: { 1 . 1}) first) abs) / 4.

error := error asFloat round: 2.
error]) plot

49

((1 to: 10000 by: 250) collect: [:i |

p := NeuralNetwork new.
p configure: 2 numberOfHidden: 2 nbOfOutput: 1.

i timesRepeat: [
p train: { 0 . 0} desiredOutput: {0}.
p train: { 0 . 1} desiredOutput: {1}.
p train: { 1 . 0} desiredOutput: {1}.
p train: { 1 . 1} desiredOutput: {0}.
].

error :=
((0 - (p feed: { 0 . 0}) first) abs +
(1 - (p feed: { 0 . 1}) first) abs +
(1 - (p feed: { 1 . 0}) first) abs +
(0 - (p feed: { 1 . 1}) first) abs) / 4.

error := error asFloat round: 2.
error]) plot

50

Classifying some data

51

Iris

52

1. Title: Iris Plants Database
Updated Sept 21 by C.Blake - Added discrepency information

2. Sources:
 (a) Creator: R.A. Fisher
 (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
 (c) Date: July, 1988

3. Past Usage:
 - Publications: too many to mention!!! Here are a few.
 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
 to Mathematical Statistics" (John Wiley, NY, 1950).
 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
 (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
 Structure and Classification Rule for Recognition in Partially Exposed
 Environments". IEEE Transactions on Pattern Analysis and Machine
 Intelligence, Vol. PAMI-2, No. 1, 67-71.
 -- Results:
 -- very low misclassification rates (0% for the setosa class)
 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
 Transactions on Information Theory, May 1972, 431-433.
 -- Results:
 -- very low misclassification rates again
 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
 conceptual clustering system finds 3 classes in the data.

4. Relevant Information:
 --- This is perhaps the best known database to be found in the pattern
 recognition literature. Fisher's paper is a classic in the field
 and is referenced frequently to this day. (See Duda & Hart, for
 example.) The data set contains 3 classes of 50 instances each,
 where each class refers to a type of iris plant. One class is
 linearly separable from the other 2; the latter are NOT linearly
 separable from each other.
 --- Predicted attribute: class of iris plant.
 --- This is an exceedingly simple domain.

Iris dataset

 Obtained from:

 https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
iris.data

 Description of the values:
 https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
iris.names

53

54

g := RTGrapher new.

d := RTData new.
d dotShape

if: [:row | row last = 'Iris-setosa'] fillColor: Color blue;
if: [:row | row last = 'Iris-versicolor'] fillColor: Color white;
if: [:row | row last = 'Iris-virginica'] fillColor: Color green.

d points: NNDataset new irisDataset.
d x: #first.
d y: #third.
g add: d.

g

55

| b data block d lb |
data := RTTabTable new input: (TRPlatform current downloadContent: 'http://mbostock.github.io/d3/
talk/20111116/iris.csv') usingDelimiter: $,.
data
 removeFirstRow;
 convertColumns: #(2 3 4 5) to: #asNumber.

b := RTScatterplotMatrix new.

b objects: data values.

block := [:n | n == n asInteger
 ifTrue: [n asInteger]
 ifFalse: [n asFloat]].
b axisX
 numberOfTicks: 5;
 rotateLabels;
 labelConversion: block.
b axisY
 numberOfTicks: 5;
 labelConversion: block.

b lineShape: (RTStyledMultiLine new
 dashedLine;
 width: 0.5; yourself
).

d := Dictionary new
 at: 'setosa' put: Color red;
 at: 'versicolor' put: Color green;
 at: 'virginica' put: Color blue; yourself.
b shape circle
 size: 3.5;
 color: [:a | d at: a first].

b metrics

56

dataSet := NNDataset new irisDatasetWithNumericalLast.
dataSet := dataSet shuffled.
cut := (dataSet size * 0.5) asInteger.
dataSetTraining := dataSet first: cut.
dataSetGuessing := dataSet last: (dataSet size - cut).

p := NeuralNetwork new.
p configure: 4 numberOfHidden: 5 nbOfOutput: 3.

p train: dataSetTraining nbEpoch: 2000.

precision := (dataSetGuessing select: [:row |
(p predict: row allButLast) = row last]) size / dataSetGuessing size.

'Prediction of precision = ', (((precision round: 4) * 100) asString), '%'

Prediction of precision = 96.0%

