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CHA P T E R 1
Introduction

In this booklet we will build together a little interpreter for a subset of the
Scheme language, that we called Physche. The idea is to implement it as
simply as possible to illustrate the key aspects and share with you the fun
of building language interpreters. Doing so we will explore several concepts:

• limited parsing

• basic interpreter, and

• closure concepts and implementation.

As future readings, we suggest Structure and Interpretation of Computer Pro-
grams by Abselson, Sussman and Sussman. I simply love it. There is also the
excellent book of Jacques Chazarain (which is one of the persons who taught
me Lisp) ”Programmer avec Scheme” by International Thomson Publishing.

A more personal note. We will implement a subset of Scheme because the
language is simple but not trivial, really powerful and also because I love it.
And while Pharo is my favorite language, it always has the taste of a Lisp lan-
guage but with lovely objects. Since I implemented several mini Schemes in
Scheme, I got inspired by the (How to Write a (Lisp) Interpreter (in Python))
post of Peter Norvig to write one in Pharo for fun.

Please contact me if you noticed I wrote something wrong or not fully pre-
cise.

S. Ducasse (stephane.ducasse@inria.fr) 23 December 2017
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CHA P T E R 2
Scheme in a (super) nutshell

We will start with a limited version of Physche, our small functional pro-
gramming language inspired from Scheme. In the first version, we will not
support the definition new functions (also called procedures). In the second
version, we will support function definition and in particular closures. We
start by presenting the subset of Scheme that we will implement.

Our objective here is not to write a Scheme following the latest language
specification. We will just cover a tiny subset. Purists may not like what I
will write but I take this tiny subset as a pretext for a first exploration. I will
present only the parts that we will implement. Physche does not support
vectors, dotted pairs, continuations, macros.

For a fast yet more complete description of Scheme I like Teach yourself Scheme
in fixnum days by Dorai Sitaram http://ds26gte.github.io/tyscheme/index.html.

Here is simple function expressing the length of a list and one example.

(define len2
(lambda (l)
(if (null? l)

0
(+ 1 (len2 (cdr l))))))

There is another way to define functions, but for simpliciyty we will focus for
now in the kind of definitions making an explicit use of lambda.

Once we defined our function, we can call it as follows:

(len2 (list 4 1 3 3))
>>> 4

3

http://ds26gte.github.io/tyscheme/index.html


Scheme in a (super) nutshell

S-Expressions

In Scheme, everything is a s-expression. A S-expression can be:

• atomic for booleans (#t, #f), number (1), symbols (we will treat strings
as atomic),

• compound as with lists: A list starts with the opening parenthesis (
and finishes by a closing one ). Lists also represent procedure applica-
tion, and

• a procedure: procedures can be normal (i.e., evaluating all their ar-
guments) or special-forms (i..e, having special ways to evaluate their
arguments. This is needed to build control-flow for example).

Values

We will present booleans, number and symbols in details but focus on the
procedure applications since this is a much more interesting concept. Still
there is one important point to raise: the value of an atomic expression is
itself. This is important since we will see that the value of list is function ap-
plication.

#t
>>> #t

11
>>> 11

Procedure application

Scheme follows a prefixed syntax (prog args ...) where the first element
refers to a function and the rest are arguments whose values is passed to the
function. A list represents function application.

(+ (* 3 2) 5)
>>> 30

The procedure associated with the symbol + is looked up and the values of
the arguments (* 3 2) and 5 are computed and passed to procedure.

By default the evaluation of a procedure application (a list) evaluates all its
components. The procedure returned as value of the first element is applied
to the values returned for the rest of the list.

So far, procedures evaluate all their arguments before starting executing the
procedure. However, we will see later on that some other forms that look
like procedures should not evaluate their arguments. This is the case of, for
example, define, lambda, quote and if. Such procedures are called special-
forms and we will have the define their semantics.
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Variable definition

To define a variable and set its value, we use the define special form: it sets
the value of the second argument to symbol represented by the first argu-
ment. Notice that define does not evaluate its first argument, only its sec-
ond one.

(define pi 3.14)

(define goldenRatio (/ (+ 1 (sqrt 5)) 2))

pi
>>> 3.14

Defining and applying procedures

To define a procedure we use the lambda special form. Its first argument is
a list representing the procedure arguments and the second argument the
body of the procedure.

(lambda (x)
(+ 2 x))

To use this procedure, we need to apply it an argument using the form (proc
args). The following piece of code shows how we can apply the argument 3.

((lambda (x)
(+ 2 x))
3)

>>> 5

To reuse a function in a program, we can assign a procedure to variable using
define.

(define add2 (lambda (x) (+ 2 x)))

(add2 3)
>>> 5

(add2 33)
>>> 35

Closures

Now a closure is more than a function. A closure refers to its definition en-
vironment. The following example illustrates it. It defines a function that
returns a function. This function (having y as a parameter) will add x to y
and x is bound to 3 due to the application of the first function. The function
y is a closure that has an environment in which the variable x is bound to 3.

5



Scheme in a (super) nutshell

(define fy3
((lambda (x)
(lambda (y)

(+ x y)))
3))

(fy3 4)
>>> 7

Similarly the following function shows that we can modify this definition
environment during function execution.

(define sy3
((lambda (x)

(lambda (y)
(begin

(set x (+ x 2))
(+ x y))))

3))

and now each time the function sy3 is executed its definition environment is
modified and the value of x is incremented.

(sy3 5)
>>> 10
(sy3 5)
>>> 12
(sy3 5)
>>> 14

Quote

quote is an interesting special form: it does not evaluate its argument but
instead returns it. It is useful when manipulating lists.

(quote 1)
>>> 1

For example, the following expressions returns then a list which looks like a
function application but it just a list.

(quote (add2 17))
>>> (add2 17)

(quote (quote 1))
>>> (quote 1)

This operation is so current that it has a special syntax: (quote x) can be
written 'x. Physche will not support the ' notation.
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2.1 Physche’s overview

Program as data

What is particularly interesting is that the syntax of the language is centered
on the one of lists and by just using a single quote or the special function
quote we can turn a program into its abstract syntax tree.

In the following example we can access the argument of the + invocation by
simple quoting the invocation and accessing using plain list operator such as
cdr.

(cdr (quote (+ 2 3)))
>>> (2 3)

List as data

To manipulate a list we can simply quote it.

The following primitive procedures allows one to manipulate lists: car (to
access the first element), cdr (to access the rest of the list), cons (to create a
list) and () represents the empty list.

(quote (1 2 3 4))
>>> (1 2 3 4)

(car (quote (1 2 3 4)))
>>> 1

(cdr (quote (1 2 3 4)))
>>> (2 3 4)

(cons 1 (quote (2 3 4)))
>>> (1 2 3 4)

2.1 Physche’s overview

Since we do not want to have to build a full parser, we will bend a bit the syn-
tax of Physche to be compatible with the one of Pharo.

• Booleans will be represented as true and false instead of #t and #f.

• Numbers will be the one of Pharo.

• Symbols and strings will be the ones of Pharo: #pharo and 'pharo'.

• Lists will be represented as arrays to be able to get benefit from the
scanner facilities of Pharo as we will explained just after. The empty
list is represented by #().

We are now ready to implement the first version of Physche. We will start
with a first version that does not include closure and function definition.
Then in a second iteration we will add closures and function definition.

7





CHA P T E R 3
A simple parser for Phsyche

We will start to implement a extremely simple parser. Then we will define an
interpreter for a limited version of the language.

3.1 Simple interpretation architecture

When implementing language compilers, parsing is the process to takes a
text as input and produces an abstract representation of the program (see
Figure 3-1). This process is often composed of a scanner and a parser. The
scanner cuts the text into a list of tokens. And the parser consumes this list
of tokens to build an intermediate representation such as an abstract syntax
tree. This abstract syntax tree is then analyzed, annotated, transformed by
a compiler to finally generate different code (bytecode or assembly). The
generated code embeds the semantics of the implemented language.

Besides having a compiler, we can also have an interpreter, i.e., a program
that executes programs of the implemented language. The idea is that the in-
terpreter will consume the intermediate representation and act adequately.
For example, when it sees a variable definition, it will declare in a structure
(usually an environment) a binding for such variable.

Note that the view depicted in Figure 3-1 is naive in sense the compiler may

Text Tokens AST

Executable form

Program interpretation

scanner parser compiler

interpreter

Figure 3-1 A naive compilation chain.
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A simple parser for Phsyche

also emit abstract instructions (for example bytecode) that will be inter-
preted by an (bytecode) interpreter and may converted on the fly to assem-
bly code. This is what the Pharo Virtual Machine does.

In our interpreter we will take a simpler route. Since Scheme syntax is sim-
ple we will just use a simple scanner and our interpreter will take as input
the tokens produced by the scanner. We will use the natural structure of the
arrays as simple abstract syntax trees.

3.2 Starting

Let us start by defining some tests to drive the development of Psyche’s in-
terpreter.

TestCase subclass: #PhsycheTest
instanceVariableNames: 'ph'
classVariableNames: ''
package: 'Phsyche'

PhsycheTest >> setUp
ph := Phsyche new

In the following test we see that we use the natural nesting of arrays of Pharo
to represent Scheme lists.

PhsycheTest >> testParseLambda
self
assert: (ph parse: '(define squared (lambda (x) (* x x)))')
equals: #(#define #squared #(#lambda #(#x) #(* x x)))

Here we check that an empty list is recognised as an empty array.

PhsycheTest >> testParseEmptyList
self assert: (ph parse: '()') equals: #()

PhsycheTest >> testParseFloat
self
assert: (ph parse: '12.33')
equals: 12.33

PhsycheTest >> testParseSymbol
self
assert: (ph parse: 'r')
equals: #r

PhsycheTest >> testParseIsNull
self assert: (ph parse: '(isNull (cons (quote a) #()))') equals:

#(#isNull #(#cons #(#quote #a) #())).
self assert: (ph parse: '(isNull (cons (quote a) ()))') equals:

#(#isNull #(#cons #(#quote #a) #()))

10



3.3 Parsing input text

3.3 Parsing input text

Now we are ready to implement the parse: method. We create the class
Phsyche which is the language interperter.

Object subclass: #Phsyche
instanceVariableNames: ''
classVariableNames: ''
package: 'Phsyche'

To implement the parse: method we take advantage of the Pharo’s Scanner
and the fact that we map list to arrays. Note that this implementation can be
really bent and it absoluletely not robust but it serves our teaching purpose.

Phsyche >> parse: aProgramString
aProgramString ifEmpty: [ ^ #() ].
^ (Scanner new scanTokens: aProgramString) first

As an exercise, we suggest you to represent lists with pairs as in traditional
Lisp and Scheme. To do so, you will need to define a better parser.

Now we are ready to interpret the parsed programs.
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CHA P T E R 4
Limited Physche

Now we will add the evaluation for the limited Physche that we mentioned
previously: we will not manage lambda function definition and closures.

4.1 Evaluating elementary elements

Let us start to specify the expected behavior of the language evaluation.

PhsycheTest >> testEvalEmptyList
self assert: (ph parseAndEval: '()') equals: #()

PhsycheTest >> testEvalBoolean
self assert: (ph parseAndEval: 'true') equals: true.
self assert: (ph parseAndEval: 'false') equals: false.

PhsycheTest >> testEvalNumber
self assert: (ph parseAndEval: '12') equals: 12.
self assert: (ph parseAndEval: '3.14') equals: 3.14.

Now we can add the following methods to Phsyche

Phsyche >> parseAndEval: anExpression

^ self eval: (self parse: anExpression)

We define now the eval: method. It is a short cut to the main eval:in:
method.

Phsyche >> eval: expression
^ self eval: expression in: nil

The eval:in: method is central to the interpreter. For now, the eval:in:
just returns its argument. Quite limited and trivial so far.
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Limited Physche

Phsyche >> eval: expression in: anEnvironment
^ expression

4.2 Defining a variable

Now we will add support for the first special form: define. We will start with
support the definition of variables.

Here is a test showing the behavior we expect.

PhsycheTest >> testDefineExpression
ph parseAndEval: '(define pi 3.14)'.
self
assert: (ph parseAndEval: 'pi')
equals: 3.14.

First we should add a dictionary that will hold the defined variables and their
values.

Phsyche >> initialize
super initialize.
environment := Dictionary new

We redefine the eval: method as follows:

Phsyche >> eval: expression
^ self eval: expression in: environment

Now we define a better eval:in: method. If the expression is a symbol, we
return the value of the expression in the enviroment. Note that we do not
refer to the instance variable environment but the parameter anEnviron-
ment because in the future we will show that we may want to look method in
different environment that the one of the interpreter.

Phsyche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [

expression first = #define
ifTrue: [ ^ self evalDefineSpecialForm: expression in:

anEnvironment ].

Then we check if the expression is a variable definition we define it. What
you should see is that define is a special form since it does not evaluate its

14



4.3 Introducing quote

first parameter only the second one. This is what the method evalDefine-
SpecialForm:in: is doing.

Phsyche >> evalDefineSpecialForm: expression in: anEnvironment
anEnvironment
at: expression second
put: (self eval: expression third in: anEnvironment).

^ #undefined

The following test shows that the a variable points to a value.

PhsycheTest >> testEvalExpression2
ph parseAndEval: '(define pi 3.14)'.
ph parseAndEval: '(define pi2 pi)'.
ph parseAndEval: '(define pi 6.28)'.
self assert: (ph parseAndEval: 'pi2') equals: 3.14

4.3 Introducing quote

Quote is an interesting special form. It is the one that does not evaluate its
argument.

PhsycheTest >> testEvalQuote
self
assert: (ph parseAndEval: '(quote (* x x))')
equals: #(#* #x #x).

self
assert: (ph parseAndEval: '(quote (quote (* x x)))')
equals: #(quote #(#* #x #x))

Phsyche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [ | first |

first := expression first.
first = #define
ifTrue: [ ^ self evalDefineSpecialForm: expression in:

anEnvironment ]
first = #quote
ifTrue: [ ^ expression second ]

15



Limited Physche

4.4 Setting up the primitives

Now we will introduce some primitives behavior such as addition, multipli-
cation, list manipulation. In this implementation of Physche we will define
them as block closures (a more object-oriented implementation reifying the
operations is possible as we will show in the latest chapter of this booklet).
Let us write a test first to specify what we want to get.

PhsycheTest >> testEvalExpression
self assert: (ph parseAndEval: '(* 3 8)') equals: 24

PhsycheTest >> testEvalMoreComplexExpression
self assert: (ph parseAndEval: '(* (+ 2 3) 8)') equals: 40.
self assert: (ph parseAndEval: '(* 8 (+ 2 3))') equals: 40

We define then for example the multiplication and addition:

Phsyche >> multBinding
^ #* -> [:e :v | e * v]

Phsyche >> plusBinding
^ #+ -> [:e :v | e + v]

The method multBinding returns a pair containing the primitive name and
its associated Pharo closure. The primitive name will be added as a variable
in the environement and its value will be the corresponding block.

Object subclass: #Phsyche
instanceVariableNames: 'environment primitives'
classVariableNames: ''
package: 'Phsyche'

We redefine the initializemethod to initialize the primitive name con-
tainer and call the initializeEnvBindingsmethod.

Phsyche >> initialize
super initialize.
environment := Dictionary new.
primitives := OrderedCollection new.
self initializeEnvBindings

Now we define the initializeEnvBindingsmethod to automatically exe-
cute all the methods ending with ’Binding’ and add the returned primitive
bindings to the environment. We take the opportunity to add the primitive
name to the list of primitives since it will help use later during the evalua-
tion.

Phsyche >> initializeEnvBindings
(self class selectors select: [ :each | each endsWith: 'Binding' ])
do: [ :s |

| binding |
binding := self perform: s.
primitives add: binding key.

16



4.4 Setting up the primitives

environment at: binding key put: binding value ]

Now we should change the eval:in: method to take into account that we
have now to support primitives call. What is interesting is that we have to be
clear about the semantic of primitive execution, obviously. We know that we
can get the closure associated to the primitive name in the environment, and
a primitive should evaluate all its arguments and pass to the closure.

Phsyche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [ | first |

first := expression first.
(primitives includes: first)
ifTrue: [ ^ self evalPrimitive: expression in: anEnvironment

]
ifFalse: [ first = #define

ifTrue: [ ^ self evalDefineSpecialForm: expression in:
anEnvironment ].

first = #quote
ifTrue: [ ^ expression second ]]

At this point our tests should all pass.

Some consideration

Note that for now we consider that the mathematical operations are only
working on pairs and not list of elements. We can do this changing the clo-
sure application. Another point to consider is that explicit check for primi-
tives prevent us to overload locally their definition and this could be changed.

Some more arithmetic primitives

Here are the definitions for more primitives

Phsyche >> isEqualBinding
^ #equal -> [ :e :v | e = v ]

Phsyche >> greaterOrEqualBinding
^ #>= -> [ :e :v | e >= v ]

Phsyche >> isEqualBinding
^ #equal -> [ :e :v | e = v ]

17



Limited Physche

Phsyche >> minusBinding
^ #- -> [ :e :v | e - v ]

Phsyche >> smallerBinding
^ #< -> [ :e :v | e < v ]

Phsyche >> smallerOrEqualBinding
^ #< -> [ :e :v | e <= v ]

Adding substraction and division

Phsyche >> minusBinding
^ #- -> [ :e :v | e - v ]

Phsyche >> divisionBinding
^ #/ -> [ :e :v | (e / v) asFloat ]

We add

PhsycheTest >> testDivision
self should: [ ph parseAndEval: '(/ 5 0)' ] raise: ZeroDivide

Adding not

PhsycheTest >> testNot
self assert: (ph parseAndEval: '(not false)').
self deny: (ph parseAndEval: '(not true)')

PhsycheTest >> isNotBinding
^ #not -> [ :a | a not ]

4.5 Adding list primitives

Now we should add some primitives to manage list such as the elementary
operations cons, car, and cdr.

Here are some tests to make sure that such primitives are acting as we ex-
pect it. Note that we expect consing is working only on list and does not pro-
duce dotted pairs.

PhsycheTest >> testEvalListExpression
self assert: (ph parseAndEval: '(cons (quote a) ())') equals: #(a)

PhsycheTest >> testEvalCarExpressionEvaluatesItsArgument
self
assert: (ph parseAndEval: '(car (cons (quote a) (cons (quote b)
())))')
equals: #a

PhsycheTest >> testEvalCdrExpressionEvaluatesItsArgument
self assert: (ph parseAndEval: '(cdr (quote (quote a)))') equals:

18



4.6 Adding if

#(a)

PhsycheTest >> testIsNull
self assert: (ph parseAndEval: '(isNull #())').
self assert: (ph parseAndEval: '(isNull (quote ()))').
self deny: (ph parseAndEval: '(isNull (cons (quote a) #()))')

Here are the primitives definitions.

Phsyche >> carBinding
^ #car -> [ :l | l first ]

Phsyche >> cdrBinding
^ #cdr -> [ :l | l allButFirst ]

Phsyche >> consBinding
^ #cons -> [ :e :l | {e} , l ]

Phsyche >> isNullBinding
^ #isNull -> [ :l | l = #() ]

Now we can get back to the implementation of more special forms.

4.6 Adding if

Now we are ready to implement if. If is a special form since it does not eval-
uate all its arguments. Indeed, if should only evaluate the correct argument
based on the boolean value.

PhsycheTest >> testEvalIf
self assert: (ph parseAndEval: '(if true 4 5)') equals: 4.
self assert: (ph parseAndEval: '(if false 4 5)') equals: 5

Well we can do better. Since numbers are auto-evaluating, this test does not
verify that only one branch is evaluated.

Let us use a division by zero checks that for us as follows:

PhsycheTest >> testEvalIfNoSpurious
self assert: (ph eval: (ph parse: '(if true 4 (/ 5 0))')) equals:

4.
self assert: (ph eval: (ph parse: '(if false (/ 5 0) 5)')) equals:

5

Now we can define the if special form.

Physche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
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Limited Physche

ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [ | first |

first := expression first.
(primitives includes: first)
ifTrue: [ ^ self evalPrimitive: expression in: anEnvironment

]
ifFalse: [ first = #define

ifTrue: [ ^ self evalDefineSpecialForm: expression in:
anEnvironment ].

first = #if
ifTrue: [ ^ self evalIfSpecialForm: expression in:

anEnvironment].
first = #quote

ifTrue: [ ^ expression second ]]
]

And we define the semantics of if execution as follows:

Physche >> evalIfSpecialForm: expression in: anEnvironment
^ (self eval: expression second in: anEnvironment)
ifTrue: [ self eval: expression third in: anEnvironment ]
ifFalse: [ self eval: expression fourth in: anEnvironment ]

Now all our lovely tests are passing.

Now our implementation is really limited in the sense that we cannot add
new functions. This is what we will address in the next chapter.
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CHA P T E R 5
Adding functions as a step

towards closures

Now we will add user function and function application to Phsyche. It is a
first step towards closures. We go step by step to describe the different as-
pects.

5.1 Function

Let us start with a first function definition.

(define pi 3.14)
(define area

(lambda (r)
(* pi (* r r))))

Now we can execute the function:

(area 10)
>>> 314

Let us analyse the definition and application of the function area. What is
important to see is that during the application (area 10), the argument r
acts as a local variable of the function. During its execution it gets the value
of the argument.

Let us check that the argument value takes precedence over variables de-
fined in outer scope.

(define r 5)
(define pi 3.14)
(define area

21



Adding functions as a step towards closures

#pi -> 3.14
#r -> 5

#r -> 10

outer environment

inner environment

(define pi 3.14)
(define r 5)

(define area 
    (lambda (r)
        (* pi (* r r))))

(area 10)

Figure 5-1 Function application creates an environment.

#dad -> ‘donald’

#son -> ‘riri’

#dad -> ‘donald’

#son -> ‘riri’

outer environment
outer environment

inner environment

inner environment

Figure 5-2 Examples of environment.

(lambda (r)
(* pi (* r r))))

Now the application.

(area 10)
>>> 314

It means that a function should have its own environment during application
but that this environment should be linked to the global one. Indeed in the
first definition of area the variable pi is found (Figure 5-1). Therefore we
will define an environment.

5.2 Defining an environment class

An environment is just a dictionary that when a binding is not found locally
continues the binding lookup in another environment called its parent or an
outer scope (See Figure 5-2)

Let us define some tests...

TestCase subclass: #PEnvironmentTest
instanceVariableNames: 'outer inner'
classVariableNames: ''
package: 'Physche'

Our setup makes sure that the inner environment is pointing to another con-
text.
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5.3 Implement an environment class

PEnvironmentTest >> setUp
outer := PEnvironment new.
inner := PEnvironment new.
inner outerEnvironment: outer

The first test is to check that we can access the values set in the each level.

PEnvironmentTest >> testLookupAtRightLevel
outer at: #dad put: 'donald'.
self assert: (outer at: #dad) equals: 'donald'.
inner at: #son put: 'riri'.
self assert: (inner at: #son) equals: 'riri'

The second test is to check that we can reach the outer value from the inner
one.

PEnvironmentTest >> testLookingOuterFromInner
outer at: #dad put: 'donald'.
inner at: #son put: 'riri'.
self assert: (inner at: #dad) equals: 'donald'

The final test checks that unknown keys are not found.

PEnvironmentTest >> testLookupInFails
outer at: #dad put: 'donald'.
inner at: #son put: 'riri'.
self should: [ outer at: #nodad ] raise: KeyNotFound.
self should: [ outer at: #noson ] raise: KeyNotFound.
self should: [ inner at: #nodad ] raise: KeyNotFound

We will improve the environment implementation to cover the definition of
new binding but we will do that when we will add functionality to change the
value of binding (i.e., implementing set in Phsyche).

5.3 Implement an environment class

An environment is just one special kind of dictionary that when it does not
find the value of a key, looks up in its father dictionary and this recursively.
We define the class PEnvironment as a subclass of Dictionary as follows:

Dictionary subclass: #PEnvironment
instanceVariableNames: 'outerEnvironment'
classVariableNames: ''
package: 'Physche'

We need an accessor to set the outer context.

PEnvironment >> outerEnvironment: anEnvironment
outerEnvironment := anEnvironment

We redefine the method at: so that we look up first locally for a value. When
this is the case we return it, else when there is an outer environment we re-

23



Adding functions as a step towards closures

cursively try to access the value. When there is no outer environment, we
simply execute the default behavior which will lead to raise an error.

PEnvironment >> at: aKey
| value |
value := self at: aKey ifAbsent: [ nil ].
^ value
ifNil: [ outerEnvironment

ifNil: [ super at: aKey ]
ifNotNil: [ outerEnvironment at: aKey ] ]

ifNotNil: [ :v | v ]

Now we are ready to define what is a procedure (or function).

5.4 Procedure definition

We need a way to represent a function. A function has a list of parameter and
a body. Let us start to write a test.

PhyscheTest >> testProcedureDefinition
| proc |
ph parseAndEval: '(define squared (lambda (x) (* x x)))'.
proc := ph parseAndEval: #squared.
self assert: proc parameters equals: #(#x).
self assert: proc body equals: #(#* #x #x)

We should define the class PProcedure. It is for now straightforward.

Object subclass: #PProcedure
instanceVariableNames: 'parameters body'
classVariableNames: ''
package: 'Phsyche'

Define the accessors for its instance variables. Now we will extend the inter-
preter to create procedure. When an expression starts with a lambda key-
word, we should return a procedure.

Physche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [ | first |

first := expression first.
(primitives includes: first)
ifTrue: [ ^ self evalPrimitive: expression in: anEnvironment

]
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5.5 Function application

ifFalse: [ first = #define
ifTrue: [ ^ self evalDefineSpecialForm: expression in:

anEnvironment ].
first = #lambda

ifTrue: [ ^ self evalLambdaSpecialForm: expression in:
anEnvironment ].

first = #if
ifTrue: [ ^ self evalIfSpecialForm: expression in:

anEnvironment].
first = #quote

ifTrue: [ ^ expression second ] ] ]

Physche >> evalLambdaSpecialForm: expression in: anEnvironment
^ PProcedure new
parameters: expression second;
body: expression third

Note that this implementation of lambda is not correct since it does not keep
a reference to its defining environment but we will do it later with closures.

Now Physche supports the definition of procedures but not their application.
Let us look at that now.

5.5 Function application

As we saw languages following Lisp like syntax follow the pattern (proc
args) to mean that the function proc is applied to the arguments args.
Such arguments are evaluated prior to be pass to the function.

Let us write tests to control such a behavior.

PhyscheTest >> testLambdaProcedureExecution
self assert: (ph parseAndEval: '((lambda (x) (* x x)) 3)') equals:

9.

PhyscheTest >> testProcedureExecution
ph parseAndEval: '(define squared (lambda (x) (* x x)))'.
self assert: (ph parseAndEval: '(squared 3)') equals: 9

Again we will implement function application step by step to understand the
different aspects.

What is important to see if that while executing a procedure body, we have
to have access to the environment, for example, to access primitive defini-
tions. We have to define a new environment where we bind the arguments
to their values. Such an environment will only be used for one application. It
will be the inner environment of Figure 5-1.

A first function application

The not really good implementation is then the following:
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Phsyche >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ]. "returns the
variable value"

expression isArray
ifFalse: [ "returns literals boolean, string, number" ^
expression ]
ifTrue: [ | first |

first := expression first.
(primitives includes: first)
ifTrue: [ ^ self evalPrimitive: expression in: anEnvironment

]
ifFalse: [

first = #define
ifTrue: [ ^ self evalDefineSpecialForm: expression in:

anEnvironment ].
first = #lambda
ifTrue: [ ^ self evalLambdaSpecialForm: expression in:

anEnvironment ].
first = #if
ifTrue: [ ^ self evalIfSpecialForm: expression in:

anEnvironment].
first = #quote
ifTrue: [ ^ expression second ]
ifFalse: [

^ self evalApplicativeOrder: expression in:
anEnvironment ] ] ]

The following method is responsible for the function application: it evaluates
its first element, which will return a procedure. It creates an new environ-
ment with the parameters and the values of the arguments as values and
execute the body of the procedure within this environment.

Phsyche >> evalApplicativeOrder: expression in: anEnvironment
"Now we have function application ((lambda (x) (+ x 3)) (+ 9 1))"

| proc newEnv |
proc := self eval: expression first in: anEnvironment.
newEnv := proc
setEnvironmentForParameters: (expression allButFirst collect: [
:e | self eval: e in: anEnvironment ])
in: anEnvironment.

^ self eval: proc body in: newEnv

Note that for function application, the application environment (newEnv) has
as parent the global interpreter environment. This will not be the case for
closures as we will see later.

The method setEnvironmentForParameters:in: is a simple helper func-
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tion that creates a new environment based on values and the procedure pa-
rameter and an outer environment.

PProcedure >> setEnvironmentForParameters: values in:
outerEnvironment

"Create a new environment inheriting from the procedure one, for
the current application."

| applicationEnvironment |
applicationEnvironment := PEnvironment newFromKeys: self

parameters andValues: values.
applicationEnvironment outerEnvironment: outerEnvironment.
^ applicationEnvironment

The class method newFromKeys:andValues: only exist in Pharo 70. Here is
its definition.

Dictionary class >> newFromKeys: keys andValues: values
"Create a dictionary from the keys and values arguments which

should have the same length."
"(Dictionary newFromKeys: #(#x #y) andValues: #(3 6)) >>>

(Dictionary new at: #x put: 3; at: #y put: 6 ;yourself)"

| dict |
dict := self new.
keys with: values do: [ :k :v | dict at: k put: v ].
^ dict

With such an implementation, all our current tests should pass. Now we are
ready to implement closures.
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CHA P T E R 6
Adding closures to Physche

Now we add closures to Phsyche. A closure is a function capturing the envi-
ronment in which is defined. We start studying some examples and then we
will implement on the closure semantics.

6.1 Studying a closure

A closure is a function which contains a reference to the environment at its
definition time. Since evaluating a lambda defines a temporary environment
in which the parameters are bound, we can use this fact to create an environ-
ment local to a function. Let us have a look at a simple example:

(
((lambda (x)
(lambda (y)

(+ x y)))
3)
7)

>>> 10

The following subexpression returns a function adding 3 to its parameter y.

((lambda (x)
(lambda (y)
(+ x y)))

3)

This is why the previous expression result is 10. It does so by executing first
function with 3 as parameter value for x. This first execution creates an en-
vironment in which x is bound to 3. Then it returns a function taking y as
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parameter and referring to this environment. This is why when the (+x y)
body is executed x is bound to 3.

The following expressions illustrate the same by defining a function y and
executing such a function.

(define fy
((lambda (x)

(lambda (y)
(+ x y)))

3))

(fy 7)
>>> 10

About let

In fact defining local environment is so frequent that Scheme and Lisp lan-
guages offer the let special form to define local environment as follow:

(let ((x 3) (+ x x))
<=>

((lambda (x) (+ x x)) 3)

You can add let to Phsyche as an exercise.

6.2 Implementing closure

The first point is that we should change the lambda special form to refer to
the environment in which it is defined.

To test that lambda effectively creates an environment. We can use this ex-
pression:

(define fy3
((lambda (x)

(lambda (y)
x))

3))

(fy3 7)

Here the nested function having y as parameter is just returning the value
of x. And during the function execution, the value of x will be looked up in
the created environment. Here is a first test. Note that it is difficult to test
the fact that a function declaration defines a new environment without using
function application.

PhyscheTest >> testSimpleClosureIntrospection

| proc |
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(
 (
  (lambda (x)
   (lambda (y)
     (+ x y)))
    3)
 7)

#x -> 3

#y -> 7

#+ -> …

Figure 6-1 Each function application creates an environment and is evaluated in

its definition environment.

ph eval: (ph parseAndEval: '(define fy3
((lambda (x)
(lambda (y)

x))
3))').
proc := ph parseAndEval: '#fy3'.
self assert: proc parameters equals: #(y).
self assert: (proc environment at: #x) equals: 3.

PhyscheTest >> testSimpleClosure

| res |
res := ph eval: (ph parse: '(

((lambda (x)
(lambda (y)
(+ x y)))

3)
7)').
self assert: res equals: 10

What is important to see is that the function lambda (y)... will be exe-
cuted in an environment where y is bound to 7 and this environment will
have as outer environment an environment with x bound to 3 as shown in
Figure 6-1

We add the environment instance variable to the class PProcedure and set
the current environment of the interpreter when creating the procedure in
during execution of the lambda special form.

Object subclass: #Procedure
instanceVariableNames: 'parameters body environment'
classVariableNames: ''
package: 'Pheme-Interpreters'

Phsyche >> evalLambdaSpecialForm: expression in: anEnvironment
^ PProcedure new
parameters: expression second;
body: expression third;
environment: anEnvironment
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Now we should revisit function evaluation to use the procedure environment
instead of the one of the interpreter.

Phsyche >> evalApplicativeOrder: expression in: anEnvironment
"Now we have function application ((lambda (x) (+ x 3)) (+ 9 1))"
| proc newEnv |
proc := self eval: expression first in: anEnvironment.
newEnv := proc
setEnvironmentForParameters: (expression allButFirst collect: [
:e | self eval: e in: anEnvironment ])
in: proc environment.

^ self eval: proc body in: newEnv

Here we create the newEnv using now the procedure environment as ex-
pressed here proc environment. What is important to see is that with clo-
sure application is that the execution environment has as outer environment
the one of the procedure.

Phsyche >> evalApplicativeOrder: expression in: anEnvironment
"Now we have function application ((lambda (x) (+ x 3)) (+ 9 1))"
| proc newEnv |
proc := self eval: expression first in: anEnvironment.
newEnv := proc
setEnvironmentForParameters: (expression allButFirst collect: [
:e | self eval: e in: anEnvironment ])
in: proc environment.

^ self eval: proc body in: newEnv

We have implemented the most important aspect of closure semantics. Now
we will add some support to modify environments and conclude with this
first version of Phsyche.

6.3 Adding set! and begin

To be able to experiment more with closures, we add support for changing
the value a binding using the set! special form and performing a sequence
of instructions using the begin special form.

The following tests specify that the modification should happen in the envi-
ronment defining the existing binding. In particular when a binding is not
right in the current environment but in one of the outer environment, this is
the environment that contains the binding that should be modified.

PEnvironmentTest >> testSetAtRightLevel

outer at: #dad put: 'donald'.
inner at: #son put: 'riri'.
self assert: (inner at: #son) = 'riri'.
inner lookupAt: #son put: 'fifi'.
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self assert: (outer at: #dad) = 'donald'.
outer lookupAt: #dad put: 'piscou'.
self assert: (outer at: #dad) = 'piscou'.

PEnvironmentTest >> testSetLookup
outer at: #dad put: 'donald'.
inner at: #son put: 'riri'.
self assert: (inner at: #dad) = 'donald'.
inner lookupAt: #dad put: 'picsou'.
self assert: (outer at: #dad) = 'picsou'.
self assert: (inner at: #dad) = 'picsou'.
self deny: (inner keys includes: #dad)

We implement a new method called lookupAt:put: that

PEnvironment >> lookupAt: aKey put: aValue
"Change the value of the binding whose key is aKey, but looking in

the complete ancestor chain.
If the binding does not exist, it raises an error to indicate that

we should define it first."
| found |
found := self at: aKey ifAbsent: nil.
found
ifNil: [ outerEnvironment

ifNotNil: [ outerEnvironment lookupAt: aKey put: aValue]
ifNil: [ KeyNotFound signal: aKey , ' not found in the

environment' ]]
ifNotNil: [ self at: aKey put: aValue ]

Now we write a simple test checking that we can change the value of a bind-
ing. We will add more complex tests once we get begin implemented.

PhyscheTest >> testEvalSimpleSet
self assert: (ph parseAndEval: '(define x2 21') equals: #undefined.
self assert: (ph parseAndEval: '(set x2 22)') equals: #undefined.
self assert: (ph parseAndEval: 'x2') equals: 22.

Now we are ready to implement set!.

Phsyche >> eval: expression in: anEnvironment
...
first = #define

ifTrue: [ ^ self evalDefineSpecialForm: expression in:
anEnvironment ].
first = #set

ifTrue: [ ^ self evalSetSpecialForm: expression in:
anEnvironment ].
first = #lambda

ifTrue: [ ^ self evalLambdaSpecialForm: expression in:
anEnvironment ].

...
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Phsyche >> evalSetSpecialForm: expression in: anEnvironment
anEnvironment lookupAt: expression second put: (self eval:

expression third in: anEnvironment).
^ #undefined

Our tests should pass.

6.4 Implementing begin

The special form begin just evaluates one after the other the expressions
in the list and return the value of the last one. The following tests are super
simple but makes sure that all the elements are evaluated and that the result
of the last one is returned.

PhyscheTest >> testEvalBegin
self assert: (ph parseAndEval: '(begin 1 2 3)') equals: 3

PhyscheTest >> testEvalBeginSet
self assert: (ph parseAndEval: '(begin (define x 1) (set x 2)

x)') equals: 2

Now the implementation of begin is the following one.

Phsyche >> eval: expression in: anEnvironment
...
first = #define

ifTrue: [ ^ self evalDefineSpecialForm: expression in:
anEnvironment ].
first = #set

ifTrue: [ ^ self evalSetSpecialForm: expression in:
anEnvironment ].
first = #lambda

ifTrue: [ ^ self evalLambdaSpecialForm: expression in:
anEnvironment ].
first = #begin

ifTrue: [ ^ self evalBeginSpecialForm: expression in:
anEnvironment ].

...

Phsyche >> evalBeginSpecialForm: expression in: anEnvironment
| res |
expression allButFirst do: [ :each | res := self eval: each in:

anEnvironment ].
^ res

A more complex test

Now we can write a more complex test showing that we can change the bind-
ing of a variable created over function application.
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PhyscheTest >> testEvalSetAtCorrectLevel
| proc |
ph parseAndEval: '
(define fy3
((lambda (x)

(lambda (y)
(begin

(set x (+ x 2))
(+ x y))))

3))
').
proc := ph eval: #fy3.
self assert: (ph parseAndEval: '(fy3 5)') equals: 10

We are done.

6.5 Fun with closures

Finally we can develop now little objects with an internal state. We define a
function whose captured environment will keep a number that can only be
modified by the function.

(define makeAccount
(lambda (balance)
(lambda (amount)

(begin
(set! balance (+ balance amount))
balance))))

Now we can create several accounts each having its own state.

(define ac1 (makeAccount 1000))
(ac1 -200)
>>> 800
(define ac2 (makeAccount 2000))
(ac2 300)
>>> 2300

6.6 Conclusion

This ends our naive implementation of a subset of Scheme. In the follow-
ing chapter we revisit the implementation to reduce the complexity of the
eval:in: method.
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CHA P T E R 7
Phemoo

This chapter is optional. In this alternate implementation we treat primitives
and special forms the same way. Basically we create an object for each case
and give the object the possibility to specify the full evaluation.

7.1 Reusing tests

To make sure that Phemoo is doing exactly the same as Phsyche we define a
subclass to PhsycheTest.

PhsycheTest subclass: #PhemooTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Pheme-Tests'

PhemooTest >> setUp
super setUp.
ph := Phemoo new

Now using the TestRunner you will be able to run all the tests on a Phemoo
instance.

7.2 Phemoo interpreter

Phemoo has the same structure and initialization than Phsyche except that
primitives and special form are represented by objects, instances of their
corresponding class in the PhemooPrimitives hierarchy as shown in Figure
7-1
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eval:in:
environment

Phemoo

valueFor:with:environment:
tag

environment
PhemooPrimitives

valueFor:with:environment:
 
PhIf

valueFor:with:environment:
 
PhPlus

valueFor:with:environment:

valueFor: aCollection 
    with: anInterpreter 
    environment: anEnv

   ^ (anInterpreter eval: aCollection first in: anEnv )  
         + (anInterpreter eval: aCollection second in: 
anEnv )

valueFor: aCollection 
     with: anInterpreter 
     environment: anEnv 

"aCollection: (if cond expr1 expr2)"

| cond |
cond := anInterpreter eval: aCollection first in: anEnv.
^ cond

ifTrue: [ anInterpreter eval: aCollection second in: anEnv ]
ifFalse: [ anInterpreter eval: aCollection third in: anEnv ]

Figure 7-1 Special forms and primitives are handled in a uniform way.

Object subclass: #Phemoo
instanceVariableNames: 'primitives environment'
classVariableNames: ''
package: 'Pheme-Phemoo'

7.3 Modeling primitives and special form

Primitives and special form are now expressed as subclasses of PhemooPrim-
itives. Each subclass should define valueFor: aCollection with: anIn-
terpreter environment: anEnvironment and the class method tag.

Object subclass: #PhemooPrimitives
instanceVariableNames: ''
classVariableNames: ''
package: 'Pheme-Phemoo'

PhemooPrimitives >> valueFor: aCollection with: anInterpreter
environment: anEnvironment

^ self subclassResponsibility

PhemooPrimitives >> tag
^ self subclassResponsibility

Plus primitives

For example plus is expressed as follows:

PhemooPrimitives subclass: #PhPlus
instanceVariableNames: ''
classVariableNames: ''
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package: 'Pheme-Phemoo'

PhPlus class >> tag
^ #+

PhPlus >> valueFor: aCollection with: anInterpreter environment:
anEnvironment

^ (anInterpreter eval: aCollection first in: anEnvironment )
+ (anInterpreter eval: aCollection second in: anEnvironment )

7.4 if special form

PhemooPrimitives subclass: #PhIf
instanceVariableNames: ''
classVariableNames: ''
package: 'Pheme-Phemoo'

PhIf >> valueFor: aCollection with: anInterpreter environment:
anEnvironment

"aCollection: (if cond expr1 expr2)"

| cond |
cond := anInterpreter eval: aCollection first in: anEnvironment.
^ cond
ifTrue: [ anInterpreter eval: aCollection second in:
anEnvironment ]
ifFalse: [ anInterpreter eval: aCollection third in:
anEnvironment ]

PhIf class >> tag

^ #if

7.5 Initializing the environment

Now we specialize the initialization of the interpreter as follows:

Phemoo >> initializePrimitives

^ PhemooPrimitives allSubclasses
do: [ :cls | primitives add: cls tag.

environment at: cls tag put: cls new ]

7.6 Reconsidering eval:in:

And we are ready to have a simpler and more systematic evaluation logic.
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Phemoo >> eval: expression in: anEnvironment
expression = #()
ifTrue: [ ^ expression ].

expression isSymbol
ifTrue: [ ^ anEnvironment at: expression ].

expression isArray
ifFalse: [ ^ expression ]
ifTrue: [ (self isPrimitive: expression first)

ifTrue: [ ^ self evaluateNonApplicativeOrder: expression in:
anEnvironment]

ifFalse: [ ^ self evaluateApplicativeOrder: expression in:
anEnvironment] ]

This method is the same as in Phsyche.

Phemoo >> evaluateApplicativeOrder: expression in: anEnvironment
"Now we have function application ((lambda (x) (+ x 3)) (+ 9 1))"
| proc applicationEnv |
proc := self eval: expression first in: anEnvironment.
applicationEnv := proc
setEnvironmentForParameters: (expression allButFirst collect: [
:e | self eval: e in: anEnvironment])
in: proc environment.

^ self eval: proc body in: applicationEnv.

The following method is calling each primitive to execute itself in the envi-
ronment.

Phemoo >> evaluateNonApplicativeOrder: expression in: anEnvironment
^ (anEnvironment at: expression first)
valueFor: expression allButFirst
with: self
environment: anEnvironment

We let to the use the redefinition of the primitives and special forms. There
is nothing more than in Phsyche. It is just expressed differently. We let to
the user the refactoring between the two interpreter to extract a common
superclass.

7.7 Conclusion

We have implemented a more modular implementation. Adding a new be-
havior is just defining a new subclass with two methods.
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