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Illustrations

This part of the book deals with call stack management, especially when the executed program-
ming language supports closures.

To master all the concepts exposed, the reader has to implement several interpreters with an in-
creasing level of complexity. An interpreter is a program that executes other programs written in
a programming language. All the interpreters are designed to execute code written in a very sim-
ple programming language, SmiLang, managing only small integers.

Although it is recommended to implement all the interpreters described in this part, the reader
has only to understand and implement the context interpreters described in Chapters 3 and 6
and read the Chapters 1 and 9 to continue reading the book. Chapters 4, 5, 7 and 8 deal with in-
terpreters using a native stack and are not required to understand the next parts of the book.

Concepts

Readers will learn the following concepts during this tutorial:

• Context interpreter

• Stack Interpreter

• Stack page management

• Closure creation and activation

– Remote temporary variable access

– Non-local returns

Outline

This tutorial is divided in several chapters:

1. Description of the SmiLang language

2. Theoretical part: Implementations of efficent stacks

3. Implementation of a simple context interpreter

4. Implementation of a simple stack interpreter

5. Addition of stack page management in to the stack interpreter

6. Introduction of naive closures in to the context interpreter

7. Introduction of simplified closures in to the stack interpreter

8. Introduction of real closures in to the stack interpreter

9. Discussion: what are the difference between the Smalltalk model and the SmiLang model

Thanks

Thanks to Stéphane Ducasse and Philippe Back for their contributions to this part of the book, es-
pecially their multiple reviews and runs of the tutorial.

Thanks to Cyril Ferlicot, Christophe Demarey and Vincent Blondeau for their reviews and runs of
the tutorial.
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CHA P T E R 1
Theory: Stack Implementation

This chapter describes how to implement efficiently a stack. This discussion is theoretical and does
not not deal directly with call stack management. However, efficient call stack management relies
on efficient stack implementations, hence call stack management is a direct application of what
is described in this chapter. In fact, while explaining the different interpreters, the book refers to
this chapter to detail which stack implementation was chosen for which part of the call stack and
why it seemed to be the best performance-wise.

Different implementations of stacks, detailled with samples of Pharo code, are explained and dis-
cussed in the following sections. There is not such a thing as a very efficient generic stack imple-
mentation for the level of performance we need for an execution stack. In fact, depending on dif-
ferent constraints, the developer can decide to implement a stack one way or another way to reach
maximum efficiency.

In high-level languages such as Pharo, people usually use the OrderedCollection class to repre-
sent data structures such as stacks or queues. In this chapter, the implementations described are
usually implemented and used in low level languages, more precisely C, C++ or Rust.

The conventional APIs of a stack are push:, pop and top. One can consider adding a few other
messages, such as size. However, messages such as at:, do: or remove: are not part of a con-
ventional stack APIs. (SD: I do not understand what you want to say with the last sentence. )

We will start to look at naive implementations (linked-list and array based) and after advanced
ones (fixed-sized stack, copying stack and stack page stack).

1.1 Naive Implementation: Linked List

The first naive implementation is to represent a stack as a linked list. The stack keeps a reference
to the top element, and each element keeps a reference to the previous element on stack, or nil if
it’s the bottom element.

Figure 1-1 shows an example of such a stack, where the characters $A, $B and $C were succes-
sively pushed.

Here is possible code that could be written to implement a stack using a linked list (we omitted the
getters and setters on StackElement).

Object subclass: #Stack
instanceVariableNames: 'topElement'
classVariableNames: ''
package: 'Collection-Stack'

3



Theory: Stack Implementation

topElement

Stack
previousElement

StackElement

element = $C

previousElement

StackElement

element = $B

previousElement = nil

StackElement

element = $A

Figure 1-1 Linked List Stack where $A, $B and $C were successively pushed.

Object subclass: #StackElement
instanceVariableNames: 'previousElement element'
classVariableNames: ''
package: 'Collection-Stack'

Stack >> push: value
topElement := StackElement new
previousElement: topElement;
element: value;
yourself.

^ value

Stack >> pop
^ topElement
ifNil: [ self error: 'stack underflow' ]
ifNotNil: [

| value |
value := topElement element.
topElement := topElement previousElement.
value ]

The implementation of the Stack class in Pharo is very similar to this implementation. However,
this class has a much larger APIs, most of them being unconventionnal for a stack.

This linked list implementation has the big advantage that it cannot overflow (as long as there is
memory available). In addition, the stack does not need to allocate memory for elements that are
not yet pushed on stack.

It has however several big problems:

• each element requires an indirection to keep the reference to the previous element through
an instance of StackElement. This has two drawbacks:

– The memory footprint per element is increased: The stack element requires at least an
extra machine word to refer to the previous element).

– Accessing an element of the stack requires two memory reads, one to read the instance
of StackElement, one to read the element itself.
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1.2 Naive Implementation: Array

array

Stack

stackPointer = 3

pointer
what the Smi represents

$A
$B
$C
nil
nil

1
2
3
4
5

Array

Figure 1-2 Array Stack where $A, $B and $C were successively pushed.

• each element can be very far in memory from the the previous element, leading to many
CPU cache misses when pushing and popping elements on stack often.

This implementation cannot be used directly for a call stack, mostly because it is really slow. How-
ever, this design inspired a better solution, the stack-page implementation, described in the fol-
lowing sections.

1.2 Naive Implementation: Array

The other naive implementation of a stack is composed of a fixed-sized array and a stackPointer.
The array holds the values pushed on the stack, while stackPointer holds the index of the top of
the stack.

Figure 1-2 shows an example of such a stack, where the characters $A, $B and $C were succes-
sively pushed.

Here is an example of how a stack could be implemented:

Object subclass: #Stack
instanceVariableNames: 'array stackPointer'
classVariableNames: ''
package: 'Collection-Stack'

Stack class >> new: size
^ self basicNew initializeWithSize: size

Stack class >> new
^ self new: 10

Stack >> initializeWithSize: size
array := Array new: size.
stackPointer := 0.

Stack >> push: value
stackPointer >= array size
ifTrue: [ self error: 'stack overflow' ].

^ array at: (stackPointer := stackPointer + 1) put: value

Stack >> pop
| top |
stackPointer <= 0
ifTrue: [ self error: 'stack underflow' ].

top := array at: stackPointer.
stackPointer := stackPointer - 1.
^ top
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Theory: Stack Implementation

This second naive implementation has two main drawbacks:

• The stack can overflow if the programmer has not anticipated the maximum size that the
stack can have in its lifetime, which is sometimes very difficult to anticipate.

• If the array allocated for the stack is huge whereas the stack uses during most of its lifetime
only a very small portion of the array, most of the space allocated for the stack is wasted.

This implementation has the following advantages over the linked list implementation:

• If the average number of elements on stack is really close to the maximum stack size during
most of the stack lifetime, then the memory consumption of this implementation is smaller
than the previous implementation.

• The stack does not require an extra indirection to access its elements, providing faster ac-
cess. All the element references are next to each other in memory, hence accessing succes-
sively to several elements usually ends up in CPU cache hits, greatly improving the perfor-
mance.

1.3 Advanced Implementations

The advanced implementations are directly inspired from the array implementation. They tackle
two main problems:

• How to handle stack overflow so that the stack can dynamically grow without wasting too
much memory and execution time.

• How to remove the stack overflow and underflow checks in the push and pop operations to
improve their performance.

The next section discusses the case where stack overflow and underflow can’t happen. The last two
sections deal with dynamic growth and shrink of the stack.

1.4 Advanced Implementations: Fixed-sized Stack

For this implementation, we assume that the operations performed on the stack are known in ad-
vance so the program can know for sure the maximum size of the stack that will used. Hence, an
array of the maximum expected size can be allocated to avoid stack overflows.

Based on a simple analysis of the operations that will be performed on the stack, the program can
also know before creating the stack if there will be a stack underflow or not, and raise an error
before creating the stack if this is the case instead of checking at each pop operations.

The stack code of the array implementation can be simplified to remove the stack underflow and
overflow checks.

Stack >> push: value
^ array at: (stackPointer := stackPointer + 1) put: value

Stack >> pop
| top |
top := array at: stackPointer.
stackPointer := stackPointer - 1.
^ top

Note that growing the stack is useless in this implementation as the stack can’t overflow.

This implementation is the most efficient possible (modulo some machine specific optimizations).
However, it has some strong constraints such as anticipating the maximum size of the stack, so it
cannot be used in all the cases where the programmer needs a stack.

In the rest of the book, this implementation of the stack will be referred as the fixed-sized stack.
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1.5 Advanced Implementations: Copying Stack

1.5 Advanced Implementations: Copying Stack

This is the approach used by OrderedCollection in Pharo. Growing the stack implies the creation
of a larger array containing the previous array elements. Here is possible code:

Stack >> push: value
stackPointer >= array size ifTrue: [ self growStack ].
^ array at: (stackPointer := stackPointer + 1) put: value

Stack >> growStack
| newArray |
newArray := Array new: array size * 2.
array withIndexDo: [ :value :index |
newArray at: index put: value ].

array := newArray.

Once the stack has grown, it can push new elements until it overflows again (then it grows again,
etc.).

This approach is reasonable but not good enough in our case. There are several problems.

Firstly, the stack grows but never shrinks. This may lead to huge memory footprint in some cases.
Adding support for stack shrinking is difficult to do without decreasing the performance of pop (it
would need an extra check in addition of the stack underflow check).

Secondly, the array used for the internal representation of the stack has a different size depending
on the size the stack had when it overflowed the last time. Hence, it is likely that once the stack
has grown, the previous array used will need to be garbage collected and can’t be directly reused
by another instance of stack which would need an array of the same size.

1.6 Advanced Implementations: Stack Page Stack

This is the stack implementation usually used for most call stacks. Initially, the stack uses a fixed-
size array, called a stack page. When the stack page is full, which corresponds to a stack overflow
in the naive array implementation described in Section 1.2, a new stack page is allocated with a
pointer back to the previous stack page and the stack keeps growing there (as shown in Figure).

In other words, the stack is represented as a linked list of stack pages. Most push and pop oper-
ations are done within a stack page so they are very efficient. From time to time, push and pop
operations requires the stack to switch to another page, in a similar way to the linked list imple-
mentation of the stack discussed in Section 1.1, which is less efficient but uncommon.

When a pop operation implies that the top of the stack is back on the previous stack page, the
stack no longer uses the stack page where the popped value was, hence it can be freed. The stack is
therefore successfully growing and shrinking, wasting at worst a stack page of memory, with low
execution overhead.

In fact, this implementation has both the advantages of the array implementation and linked list
implementation, with very little drawbacks:

• wasting at worst a stack page of memory (still better that naive implementation in most
cases).

• sometimes, a push and pop operations needs to switch to another stack page which is slow.

Here follows a possible implementation where the first element of the stack page (an Array) refers
to the previous stack page or nil as shown in 1-3.

Stack initialization.

Object subclass: #StackedPageStack
instanceVariableNames: 'array stackPointer'
classVariableNames: ''
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Theory: Stack Implementation

array

Stack

stackPointer = 4

pointer
what the Smi represents

Array
(page 1)

nil
$A
$B
$C
nil

1
2
3
4
5

stack := StackedPageStack new: 5.
stack push: $A.
stack push: $B. 
stack push: $C

1.

2.

array

Stack

stackPointer = 5

Array
(page 1)

nil
$A
$B
$C
$D

1
2
3
4
5

 stack push: $D

3.

array

Stack

stackPointer = 5

Array
(page 2)

prevpage
$E
nil
nil
nil

1
2
3
4
5

 stack push: $E Array
(page 1)

nil
$A
$B
$C
$D

1
2
3
4
5

Figure 1-3 Example of successive operations on a stack with stack pages SD: stackpointer should be 2 in

step3.

package: 'Collection-Stack'

StackedPageStack class >> new
^ self new: 10

StackedPageStack class >> new: size
^ self basicNew initializeWithSize: size

StackedPageStack >> initializeWithSize: size
array := Array new: size.
stackPointer := 1.

Push operation.

StackedPageStack >> push: value
stackPointer >= array size ifTrue: [ self nextStackPage ].
^ array at: (stackPointer := stackPointer + 1) put: value

StackedPageStack >> nextStackPage
| newArray |
newArray := Array new: array size.
"A reference to the previous page is kept
to be able to pop to it later"
newArray at: 1 put: array.
array := newArray.
stackPointer := 1.

Pop operation.
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1.6 Advanced Implementations: Stack Page Stack

StackedPageStack >> pop
| top |
top := array at: stackPointer.
stackPointer <= 1 ifTrue: [ ^ self fixStackPageForPop ].
stackPointer := stackPointer - 1.
^ top

StackedPageStack >> fixStackPageForPop
"The first value of each stack page is nil for the first
stack page else a reference to the previous stack page."
(array at: stackPointer)
ifNil: [ self error: 'stack underflow']
ifNotNil: [ :previousPage | self previousStackPage: previousPage ]

StackedPageStack >> previousStackPage: previousPage
array := previousPage.
stackPointer := previousPage size.

Example

We show some code pushing and popping elements on a stack implemented with stack pages (SD:
rm aside from the memory representation of the stack). The following 6 points refer to the num-
bers shown on Figure 1-3 and Figure 1-4.

1. The stack is created and initialized with a first stack page of size 5. The program pushes on
stack successively $A, $B and $C. Once done, the stack pointer holds 4 so the top of the stack
refers to $C as expected. The first field of the array is nil to mark that this array is the first
stack page so stack underflow can be detected.

2. $D is pushed on stack. As there is enough room on the stack page to hold $D, it is pushed on
stack as the naive array implementation described in Section 1.2.

3. $E is pushed on stack. There is not enough room on the stack page for $E. Hence, a new stack
page is allocated for the stack. The first field of new stack page refers to the previous page so
the stack will be able to pop values back to the values on the first page. $E is pushed on the
new page.

4. $F is pushed on stack. As there is enough room on the stack page for $F, it is pushed on stack
as the naive array implementation described in Section 1.2.

5. The value $F is popped from the stack. After popping, there is still a value on the stack page,
hence the pop operation is done as the naive array implementation described in Section 1.2.

6. The value $E is popped from the stack. This time, after popping, there are no more values on
the stack page. Hence, the stack page is freed. The first value of the page is used to change
the reference of the stack page (array field) in the stack to the previous stack page. The
stack pointer is updated so the top of the stack is the top of the previous stack page.

In this simple example, stack pages of size 5 were used. It implies that 4 out of 5 push and pop op-
erations are very efficient because they are done within a stack page, and 1 out of 5 operation is
less efficient because it needs to handle the stack page switch. At worst, the stack wastes a stack
page of memory, 3 fields in this case, if the last stack page is almost empty as in step 3. In addition,
there are some memory overhead due each stack page needing to keep a reference to the previous
stack page or nil.

In practice, the stack page used are far bigger (usually a few kilobytes), so the overhead of the ref-
erence to the previous stack page or nil is negligible, and the stack wastes at worst a few kilobytes
of memory if the last page is almost unused.

Discussion

Uncommon stack page switch
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Figure 1-4 Example of successive operations on a stack with stack pages. MOve the third line on the

right of the picture to get smaller diagrams.

The main remaining drawback of this implementation in term of performance is the stack page
switch. More precisely, it can happen for a specific stack that once initialized with enough values
to fill a stack page, all its operations push one value on stack and pop it multiple times, in a way
that all the pop and push operations for this specific stack are done across stack pages. This case
is usually handled with extra heuristics based on the running program. It will be discussed later in
this part of the book in the context of call stack management.

Unchecked pop and push operations

In the case of a call stack, the program knows ahead of time that the stack can underflow or over-
flow only during specific operations (function returns and function calls), hence it does not need
to check for stack page underflow and overflow all the time. In fact, most push and pop operations
are done within a stack page without checking if it is required to switch to another stack page, as
in the fixed-sized stack implementation described in Section 1.4.

Reusing the stack pages

Assuming that the program uses several stacks that all use stack pages of the same size, all the
stack pages used in the program have always the same size so they can be easily reused. A pool
of stack pages is then available, and when a stack needs to allocate or free a stackpage, it can just
request the pool to provide a page or return a page to the pool. This way, the allocation and deallo-
cation of stack pages can be really cheap.
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CHA P T E R2
SmiLang: A Simple Integer Language

In the following of this book, you will implement several interpreters of the language SmiLang.
“Smi” is the nickname for SmallIntegers in several VM development teams, hence SmiLang is
a language that just manipulates small integers (Smis). This chapter describes briefly SmiLang,
which is a very simple language. SmiLang has only function activations, function returns, tempo-
rary variables, and some primitive operations on Smis.

2.1 SmiLang Basics

SmiLang only manipulates Smis: all the variable values are Smis and are initialized by default to 0.
Functions can only be called through static calls. Every function has to return a value (no proce-
dures).

SmiLang supports the following programmer level operations:

• Definition of temporary variables, constant Smi, and functions.

• Access to temporaries and function arguments.

• Store values to temporaries.

• Calls to primitives operation (such as addition) and user defined functions.

This tutorial comes with a ready to use compiler transforming the high-level programmer code
into stack-oriented instructions. Such high-level operations are compiled into 7 low-level instruc-
tions:

1. CallFunction: This instruction represents a static call. The instruction has a reference to the
function to call. Executing the instruction activates the function.

2. Pop: Executing this instruction pops the top of the stack.

3. PrimitiveOperation: This instruction represents a primitive operation between Smis (for
example, +). Executing this instruction pops the two operands from the stack and pushes the
result of the primitive operation.

4. PushSmi: Executing this instruction pushes a Smi constant on top of the stack. The instruc-
tion has a direct reference to the Smi to push.

5. ReturnTop: Executing this instruction pushes the top of stack on the context’s sender or
stack frame caller. Pursuing the execution resumes the execution in the calling function.

6. PushTemp: Executing this instruction pushes the value of a temporary variable on top of
the stack. The instruction has a reference to the index of the temporary variable to push.

11



SmiLang: A Simple Integer Language

This operation is typically used when the program needs to read the value of a temporary
variable.

7. StoreTemp: Executing this instruction changes the value of a temporary variable for the
value present on top of the stack. The instruction has a reference to the index of the tempo-
rary variable to push. This operation is typically used when the program needs to write the
value of a temporary variable.

2.2 SmiLang Examples

Here are 3 examples that show the whole language:

Function one

Function one is a zero argument function which returns the constant Smi 1. The operator ^ is used
to represent a function return, followed by the value to return.

Source code:

one
^ 1

Instructions:

one
<1> push 1
<2> returnTop

Function add:to:

Function add:to: is a 2 argument function which adds the values of the 2 arguments and returns
it.

Source code:

add: x to: y
^ y + x

Instructions:

add:to:
<1> pushTemp: 2
<2> pushTemp: 1
<3> primitive: +
<4> returnTop

Function example07TempAndCallAndCallArgs

Function example07TempAndCallAndCallArgs is a zero argument function with two static func-
tion calls to the functions named one and add:to:. Each call is written using the keyword call
followed by the keywords of the function named to call separated by the arguments values. The
function also uses a temporary variable, named t and declared at the beginning of the function
with | t |. The operator := is used to represent an assignment.

Source code:

example07TempAndCallAndCallArgs
| t |
t := call one.
^ call add: t to: 2

Instructions:

12



2.2 SmiLang Examples

example07TempAndCallAndCallArgs
<1> call one
<2> storeTemp: 1
<3> pop
<4> pushTemp: 1
<5> push 2
<6> call add:to:
<7> returnTop

The instruction storeTemp reads the value to store on the stack but does not pop it. Therefore the
compiler should pop it.

SD: Can you add a discussion on the difference between pop and returnTop we see that returnTop
is really important but unclear: the description above is full of hidden assumption: push top of
stack on the context’s sender or stack frame caller. Pursuing the execution resumes the execution
in the calling function. No idea what is context’ sender. So having a simple diagram and explana-
tion would help. The point is that the context idea is never introduced. ReturnTop should really be
better explained

We are set

The complete SmiLang has been introduced. This language may not be usable for a real application
but it is perfect for our exercise which consists of the different implementations of function calls
and returns.

13





CHA P T E R3
Context Interpreter

A context interpreter is an interpreter which represents the activation of each function call by a
data structure called a context. The call stack is composed of a linked list of contexts.

3.1 What is a Context ?

A context is a data structure which represents a function activation. In this chapter, contexts are
instances of the class SmiContext.

A context holds information such as:

• The values of local variables.

• The program counter (also called instruction pointer).

• The function being executed (because the function holds the instructions to be executed).

• The context that activated it (also called caller or sender).

Figure 3-1 presents a given computation state showing the relationships between context, stack,
function, and instructions in SmiLang.

Let us explain each data structure present in this Figure.

Context.

• The sender field of the context references another context, the one which activated it. Such
context chain is created during function call: the sender context has temporarily stopped its
execution just after the function call that activated the described context.

• The program counter field holds 3, which means the next instruction the interpreter will
execute is the third instruction of the function.

• The function field is a reference to the function being activated. A context refers to the
function because the function is a holder of instructions to be executed.

• The stack pointer field holds 6, which means that in the space allocated for this specific
context stack, which is in our case 7, only 6 values are currently used and the value at posi-
tion 6 is the top of the stack.

• Lastly, the stack field references the array internal to the stack representation. The con-
text’s stack values are specific to the function activation and independent from other con-
texts.
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Context Interpreter
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Figure 3-1 Relationships between Context, Stack, Function and Instructions in a context interpreter.

Function.

• The field name is useful for debugging purpose.

• The fields numArguments and numTemporaries describe the information mandatory to the
execution of the function. They are determined by the compiler. The interpreter and de-
bugger use these values to figure out, for each value on stack, if they correspond to an ar-
gument, a temp or a spilled value (value temporarily pushed on stack for the execution of
instructions, detailled later in the chapter).

• maxStackSize. For performance reason, the context, on creation, allocates for its stack
enough space for the maximum size that its stack can take during the function execution.
This maximum size is specified by the compiler. In Figure 3-1 the field maxStackSize holds
7.

Stack.

A stack is associated to each context, i.e., each function activation. A context’s stack is composed
by the following values, in this specific order:

1. The values of the function arguments.

2. The values of the temporary variables.

3. The spilled values, which are the values pushed on stack by previously executed instructions.
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3.2 Concrete Example: Activation of function add:to:

The compiler can guarantee, for a given function, that the stack of its activation does not need to
be bigger than a size it computes (maxStackSize field of a function) and that the instructions gen-
erated will not lead to stack underflows or overflows at execution time. Hence, the context can use
the fixed-size stack design described in the Section 1.4. Instead of creating a separate data structure
(i.e., the context refering to the stack, the stack itself refering to its internal array and stack-
Pointer), to limit the number of memory reads, the context directly holds the stackPointer and
the array required by the stack representation (this array is named stack in the implementation
you will work on). On Figure 3-1, the context have the fields stackpointer and stack, the stack
being a reference to an array.

Two Different Stacks.

Pay attention, the term stack is a bit overloaded here. In fact we have two stacks:

• On the one hand, a context interpreter represents the current state of its execution using a
call stack: a kind of linked list of contexts. This is such a stack that you see in a traditional
debugger.

• On the other hand, in addition each context needs some memory organized as a stack to ma-
nipulate temporaries, arguments and to perform the computation of the function associated
and currently executed. This is the stack (implemented using an Array) associated to the
context as shown in Figure 3-1.

3.2 Concrete Example: Activation of function add:to:

Remember add:to: function definition is:

add: x to: y
^ y + x

This function is invoked in particular by the function example07TempAndCallAndCallArgs.

example07TempAndCallAndCallArgs
| t |
t := call one.
^ call add: t to: 2

In Figure 3-2, the context represents the activation of the function add:to: within the function
example07TempAndCallAndCallArgs.

The sender field holds the activation of the function example07TempAndCallAndCallArgs. As we
can see, the function has a call to the function add:to:.

The programCounter is 2, which means that

• The first instruction 1| pushTemp 2 has already been executed or is currently being exe-
cuted.

• The second instruction, 2| pushTemp 1 is the next instruction to be executed. Note that in
most interpreter implementations, the pushTemp instruction works both for arguments and
temporary variables depending on the value of the temp index encoded in the instruction.
For store, it reads the value to store on the stack but does not change the stack pointer. For
push, it pushes the value of the temporary variable on the stack. In this case the instruction
is used to access the arguments values.

The function field holds a reference to the function add:to:. This function has 2 arguments, 0
temporary variables and a stack that can go as deep as 4 entries. It has a list of 4 instructions.

The current stack holds the values of the two arguments of the function call call add: t to: 2
and the spilled value 2 due to the first instruction 1| pushTemp 2 that has been executed.

Now let us look at two examples of execution.
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Context Interpreter
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Figure 3-2 Context and collaborators for the add:to: call in example07TempAndCallAndCallArgs.

unknown
unknown

1 pushSmi 1
2 pushSmi 2
3 primitive +

pc
StackInstructions

1
2

0sp

1
unknown

1 pushSmi 1
2 pushSmi 2
3 primitive +

pc

StackInstructions

1
2

0
sp

1
2

1 pushSmi 1
2 pushSmi 2
3 primitive +pc

StackInstructions

1
2

0

sp

3
2

1 pushSmi 1
2 pushSmi 2
3 primitive +

pc

StackInstructions

1
2

0
sp

4

Step 1.

Step 2.

Step 3.

Step 4.

Figure 3-3 Stack states at each pc during the interpretation of 1 + 2.

3.3 Example 1: Interpreting a simple expression

Let us now execute step by step 1 + 2. Figure 3-3 shows the state of a context’s stack at each pro-
gram counter during the execution of expression 1 + 2. Remember that the program counter (pc)
points to the next instruction to be executed.

• Step 1: When the interpretation of 1 + 2 starts, stackPointer (sp) is at 0, 2 slots are already
allocated on stack for the computation, program counter (pc) is 1.

• Step 2: First instruction execution (pushSmi 1): the constant 1 is pushed on stack. stack-
Pointer is now 1.

• Step 3: Second instruction execution (pushSmi 2): the constant 2 is pushed on stack. stack-
Pointer is now 2.
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3.4 Example 2: Interpreting a sequence of affectations
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Figure 3-4 Stack states for the first pcs during the interpretation of temp1 := 1. temp2 := temp1 +
3.

• Step 4: Third instruction execution (primitive +): the two constants are popped from the
stack, the interpreter computes the result (by asking the host language or CPU), and pushes
the result on stack. stackPointer (sp) is now 1. The value at the second stack position is 2
but it will not be reached by execution anymore: it is what is called a spilled value.

3.4 Example 2: Interpreting a sequence of affectations

Let us now execute step by step the expression temp1 := 1. temp2 := temp1 + 3. Figure 3-4
describes the first steps of the interpretation. Try to draw or imagine the next steps.

Some points:

• The stack starts with two temporaries allocated: one for temp1 and one for temp2.

• We see that storeTemp uses the value on the top of the stack to change the values of a tem-
porary but it does not pop the stack value. This is why it is followed by a pop instruction.
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Context Interpreter

3.5 Calls and Returns

In the two first examples we described the instructions that work inside a function activation. Now
let’s discuss the two interesting instructions, function calls and returns. They require the creation
or the termination of a function activation i.e., a context as well as passing information from one
context to its sender.

Function Calls

The call instruction creates a new context, pops the argument values from the top of the stack and
copy them to the new context’s stack. It then proceeds execution in the freshly created context.
Indeed, remember that prior to the call execution, the argument values are on top of the stack of
the current context. Once the call is actually performed, the arguments are the first elements of
the stack followed by the temporaries of the new function.

Returns

The returnTop instruction pushes the top of the stack of the active context on the top of stack
of the sender context. It then terminates the active context and resumes execution in the sender
context. This instruction navigates back from senders to senders.

3.6 Building a Naive Context Interpreter

Now it is time for you to code and understand by building step by step an interpreter. In this book,
you will write several intepreters. The first one (that you will build now) is a naive context inter-
preter. This means as you will see that each function invocations implies the creation of a separate
context object and that values have to be passed to and from context chains.

The one we will explain you in the next chapter and that you will also implement is called Stack
interpreter because it does not use separate context objects but a contiguous memory zone, a stack.
Hence its name.

Getting Prepared

In the next Chapter you will implement a naive context Interpreter. You will refine it in the subse-
quent Chapter. The coding setup is simple:

Open a Pharo image, load the package SmiLang you can find on http://smalltalkhub.com/mc/ClementBera/

3DaysVM/main.

You can use the following repository description:

MCSmalltalkhubRepository
owner: 'ClementBera'
project: '3DaysVM'
user: ''
password: ''

The package SmiLang contains several tags each one grouping the classes corresponding to differ-
ent aspects of SmiLang: compiler, context interpreter, stack interpreter, and tests.

Key Classes

For now let us focus on the context interpreter SmiContextInterpreter and its companion test
class SmiContextInterpreterTests. A class SmiContext is given as a possible implementation of
a Context for SmiLang. A SmiContextInterpreter class skeleton is given, but many methods are
not implemented (they only hold self shouldBeImplemented). You will have to define them.
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3.6 Building a Naive Context Interpreter

The Smi interpreter you should build is a really simple one: It can only interpret function.

The interpretation starts with a fake Context which holds flags. The interpreter then calls a func-
tion (the public API, interpret:, specified in the public method protocol, specifies the function to
call). The interpreter keeps interpreting instructions until it returns to the flagged context, which
signals the end of the execution. It then returns the value computed.

SmiContextInterpreter >> initialContext
^ SmiContext new

programCounter: 0;
function: #stopFlag;
initialContext;
yourself

The entry point of the interpreter is the method interpret: aFunction. It sets the bottom of the
call stack, creates a new one for the given function and starts interpreting it.

SmiContextInterpreter >> interpret: function
currentContext := self initialContext.
self newContextFor: function.
self interpret.
^ currentContext top

Once everything is set up, the actual interpretation happens in the method interpret.

SmiContextInterpreter >> interpret
[ currentContext function == #stopFlag ] whileFalse: [

currentContext programCounter: currentContext programCounter + 1.
self interpretNextInstruction ]

Now your job starts.

SmiContextInterpreter >> interpretNextInstruction
"should ask the current instruction to 'accept: self' to dispatch"
self shouldBeImplemented.

Halt onCount: 1000. "You may use this code to halt on infinite loops"

The class SmiContextInterpreterTests defines a set of tests that have to pass. They are ordered
by order of difficulty. It is possible to look at the code and the compiled version of the examples.
Here is the code of the first test, where you see the definition and instructions of the method un-
der test and the actual test.

testExample1
"This test ensures that the execution of the function example01Return is correct.
-- Source code --
example01Return
^ 1
-- Instructions --
<1> push 1
<2> returnTop"
self
assert: (self runSmiFunction: (self compilePharoMethod:
SmiExamples>>#example01Return))
equals: 1

Good luck and have fun.
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CHA P T E R4
Simple Stack Interpreter

In this chapter, you will implement a stack interpreter. What is a stack interpreter compared to
the previous one you implemented? Instead of considering contexts as separated objects, a stack
interpreter uses a contiguous memory space where function activations reuse arguments pushed
on the stack instead of copying them over the new function activation. The stack interpreter de-
scribed in this chapter is a simple version of it, as it conceptually holds a single monolithic infinite
stack. The next chapter explains how to handle a finite stack (using stack pages). But before get-
ting started, let us analyze the problems of the context interpreter.

4.1 Inherent Limits of the Context Intepreter

The context interpreter, as implemented in the previous chapter, has several issues:

• Time is wasted when copying the arguments at each function call from the caller (sender)
context to the freshly created context. If one would design a context interpreter which does
not copy the arguments, then a context needs access the arguments through the caller con-
text. As the caller context may be far in memory (hence, maybe not on the CPU cache), it is
in practice even slower.

• A second problem is that Contexts are separate data structures and hence can be allocated by
the host language, like C, far from each other. This implies that memory reads are spread in
the memory and this is problematic for performance (mismatch with CPU caches).

• Another issue is that hardware-implemented CPU instructions like calls and returns are dif-
ficult or even impossible to use directly with contexts when in the future the developer will
add a just-in-time compiler.

The stack interpreter memory representation is then closer to the C counterpart and it is the foun-
dation of Just-in-Time compiler.

4.2 Call Stack

SD: check the term native stack and either rename it or explain to what it refers to. In one sen-
tence, a stack interpreter is a context interpreter where all the contexts have been merged into a
single stack called ”call stack” or ”native stack”. In the first version you will implement we con-
sider the stack as infinite. As the stack is infinite and the first stack frame is tagged to mark the
beginning of the stack, the interpreter does not need to check for stack underflow or overflow
anywhere.

The implementation of the stack is the fixed-array stack described in Section 1.4, with an array
that has conceptually an infinite size and in practice a size bigger that what the interpreter needs
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Simple Stack Interpreter
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Figure 4-1 Representation of a native stack.

in the worst case. The interpreter will hold directly references to the stack pointer and the array
holding the call stack entries which are structured in stack frames. A stack frame is conceptually
a ’transformed’ context in the sense of the previous chapter. A stack frame represents a function
activation. Stack frames are stored in a contiguous memory (also called in the following native
stack). As we will see it allows to avoid copying arguments around.

Call Stack Representation

Figure 4-1 describes the representation of a native stack.

The native stack holds information relative to each context next to each other. Assuming that the
stack grows down, the data up to a stack frame is related to the sender of the function activation
and the data down is related the function called by the activation.

Interpreter State

Instead of pointing to the active context, the interpreter points directly to the state of the active
function activation. It knows the following information:

• the active function.

• the pc (program counter) being executed.

• the active frame pointer: it points to the beginning of the function activation in the native
stack.

• the stack pointer, it points to the top of the native stack and the top of the active stack frame
(they are the same). Values will be pushed and popped there.

Stack Frame Representation

In the native stack, we call stack frame a portion of the stack that represents a function activation
(it corresponds to a context in the previous interpreter, except that the stack frame size is vari-
able depending on how many values were pushed on stack before the activation of the next stack
frame). Except the active stack frame, a stack frame is represented in order as follow:
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4.2 Call Stack

• Temporaries: Allocated at stack frame creation, this space holds the values of the tempo-
rary variables of the activation. The size of this space is known thanks to the numTemps prop-
erty of the function.

• Spilled Values: These values are pushed on top of the stack by some instructions to be con-
sumed by one of the next instruction. The size of this zone is variable, depending on the cur-
rent execution state. It has a size of 0 at stack frame activation time. Then, for example, if a
pushSmi instruction is performed, it will have a size of 1, as the Smi will be pushed on stack.

• Arguments: When calling a function, the interpreter pushes the arguments of the function
called on the stack. On the contrary to the context interpreter, the arguments are never
copied. Arguments are accessed in the caller stack frame relatively to the active stack frame
frame pointer (this is detailed later in the chapter).

• Function, pc and frame pointer: Once a new function is activated, the interpreter can’t
hold anymore the pc, the function and the frame pointer of the previous activation. It needs
to hold the information related to the new stack frame created for the function being called.
To remember the information, the interpreter pushes on stack the active function, pc and
frame pointer. On return, the interpreter will set its values with the values on stack. The
framePointer holds a reference to the beginning of the previous stack frame.

Active Stack Frame

The active stack frame, i.e., the bottom stack frame, is different. The active function, pc and frame-
pointer are directly held by the interpreter (they are not on the stack). In practice, this avoids
memory reads and writes if the interpreter variables (currentFunction, pc, framePointer) are in
registers instead of in memory.

Concrete Example: Activation of the Function add:to:

Figure 4-2 describes the same example than for the context interpreter in Figure 3-2. Don’t hesi-
tate to compare both architectures if you don’t understand everything.

add: x to: y
^ y + x

The function add:to: is invoked in particular by the function example07TempAndCallAndCallArgs
whose definition is given below:

example07TempAndCallAndCallArgs
| t |
t := call one.
^ call add: t to: 2

The interpreter holds:

• A reference to the function being executed, the function add:to:.

• The pc of the next instruction to execute, 2.

• The frame pointer corresponding to the beginning of the current stack frame for the activa-
tion of the method add:to:.

• The stack pointer, which is the last value being used on stack and the top of the active stack
frame.

The active stack frame starts with a framePointer which refers to the framePointer of the previous
stack frame, i.e., the beginning of the previous stack frame. For example, in Figure 4-2 the inter-
preter frame pointer points to slot 9 which refers to the previous stack frame start.
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Simple Stack Interpreter
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Figure 4-2 Example of a native stack for the call to add:to: in example07TempAndCallAnd-
CallArgs.

4.3 Temporary Variable Access

The interpreter assumes that the compiler forbids writing into the function arguments (compila-
tion error). Hence, the store into temporary variable instruction (storeTemp) remains simple as it
assumes the temp index is the index of a temporary variable. Remember that the temporaries are
now stored at the beginning of the stack frame (just after the frame pointer).

The pushTemp instruction is different. Depending on the tempIndex value and the value of nu-
mArgs of the function, two cases exist whether the tempIndex correspond to an argument or to a
temporary variable.

To distinguish between temporaries and arguments, you have to remember that the compiler
emits index for arguments then for temporaries. Therefore if a tempindex is larger than the func-
tion arguments, it is for a temporary.

TempIndex for Argument

When the tempIndex corresponds to an argument, its value is accessed in the caller frame rela-
tively to the active frame pointer. The previous frame has at its end the argument values, its func-
tion and its pc. The interpreter needs to substract 3 from the stack pointer to reach the zone in
the previous stack frame holding arguments, then substract the number of arguments and add the
tempIndex to access the correct field, as shown on Figure 4-3.

TempIndex for a Temporary Variable

When the tempIndex corresponds to a temporary variable, we can access the corresponding value
relatively to the framepointer. We need to add the tempIndex to the framePointer and substract
the number of arguments as they are stored on the caller frame, as shown on figure 4-4. We have
to substract the number of arguments because if you remember in the context interpreter the ar-
guments are pushed first and then the temporaries. Since the compiler did not change and that
in this implementation the arguments are stored in the previous stack frame we have to substract
their number to get the right temporaries offset.

Note that in Pharo, the bytecode compiler works the same way than the presented scheme: it
emits bytecodes working in the case of explicit contexts and the JIT optimizes this code by using
the knowledge that contexts are converted into stack frames.
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Simple Stack Interpreter

4.4 Call Instruction

The call instruction is different from the context interpreter as one needs to update the inter-
preter state and create a new stack frame instead of simply creating a new context.

The call instruction works as follow:

• Pushes the pc, the active function and the frame pointer on stack.

• Sets up the stack zone after the new frame pointer with only slots for temporary variables
(no slots for arguments as they are accessed from the caller frame). It usually implies to up-
date the stackPointer and set the temporary variable fields to a default value (0 in our case).

4.5 Return Instruction

The return instruction has to set the execution to the previous stack frame execution state. This
implies:

• popping the stack up to the previous frame pointer,

• then popping and restoring the previous active function, frame pointer and pc,

• and lastly popping the arguments of the function call.

In addition, it needs to push the returned result on stack.

4.6 Build a Stack Interpreter

In this exercise you will build a Stack Interpreter, i.e., a bytecode interpreter using a stack instead
of contexts.

The package tag SmiLang-Stack interpreter contains the skeleton code. A SmiStackInter-
preter class skeleton is given, but many methods are not implemented (they only hold self should-
BeImplemented).

The interpreter is with a new stack page which represents a contiguous

SmiStackInterpreter >> initialize

super initialize.
currentStackPage := self newStackPage.
stackPointer := 0.

SmiStackInterpreter >> newStackPage
^ Array new: self stackPageSize

The interpretation starts with a fake stack frame which holds flags.

SmiStackInterpreter >> interpret
[ currentFunction == #functionFlag ] whileFalse: [
programCounter := programCounter + 1.
self interpretNextInstruction ]

The Interpreter then calls a function (the public API, interpret:, specified in the public method
protocol, defines the function to call).

SmiStackInterpreter >> interpretNextInstruction
"Asks the currentInstruction to accept self"
...

The interpreter keeps interpreting instructions until it returns to the flagged stack frame, which
signals the end of the execution. It then returns the computed value.
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4.6 Build a Stack Interpreter

The SmiStackInterpreterTests have to pass to proceed to the next chapter.

Good luck and have fun !
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CHA P T E R5
Stack pages

In this chapter we will improve previous interpreter limit: to need infinite stack. We will intro-
duce stack pages - a linked list of pages.

5.1 Problem

The Stack interpreter built in the previous chapter is very nice as it introduced many concepts. It
has however a critical flaw: the stack is considered as infinite. An infinite stack is possible theoret-
ically but not in practice as you need to specify to the computer a size to allocate. This size can’t be
too big because if the program uses multiple processes, each process requires a separate stack.

5.2 Solution

A common solution is to split the stack into stack pages of limited fixed size, as described in Sec-
tion 1.6. When the stack page overflows, the interpreter switches to a new stack page. All the
stack pages are created at interpreter start-up and there are a fixed limited number of stack pages
available. The interpreter never allocates new stack pages or free them, it instead reuses the pre-
allocated stack pages. Once all the pages are full, different strategies exist depending on the lan-
guage you want to implement:

• Raise a StackOverflow error.

• Serialize a few stack page to free them, and once a serialized stack page needs to be used
again materialize it.

To avoid checking at each push instruction if the stack page overflows or not, the interpreter uses
the maxStackSize (SD: this is not called maxStackSize but stackSize) field of the function executed
to predict at stack frame creation time if the stack is going to overflow or not during the function
execution. If a stack overflow is going to happen, the interpreter switches to a new stack page.
There is no such thing as a stack frame split between two pages, it cannot happen.

On the contrary to the simple stack with stack pages described in subsection 1.6, each stack page
can have several unused fields. Indeed, the interpreter switches to a new stack page if there is not
enough room for the next function execution, even if there are a few free fields left on the active
stack page.

This complexifies a bit the stack page management, as when popping across stack pages, the stack
pointer needs to be restored to the correct field in the previous stack page which is not necessarily
the top field of the page. To know what value the stack pointer has to be restored to, the stack has
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Stack pages

to keep additionnal metadata at the beginning of each page. The simple scheme described in Sec-
tion 1.6 only keeps the reference to the previous stack page at the beginning of each page, whereas
this implementation needs to keep in addition the stack pointer value to restore.

Implementation

The implementation is as follow:

1. Function Activation: In addition to what is done in the StackInterpreter, the interpreter
estimates the stack frame size based on the maxStackSize field of the function to activate. If
there is not enough room in the stack page for the next stack frame, the interpreter switches
to a new stack page.

2. Return: In addition to the StackInterpreter behavior, if the stack frame returning is at
the top of a stack page, the interpreter returns to a stack frame in another stack page. The
top of a stack page has to be marked (for example, the return pc of the first stack frame of
a page can be a flag, with the actual pc in the stack page metadata first fields) so the inter-
preter knows it has to do a return across stack pages.

5.3 Exercise

As an exercise, have the SmiStackInterpreterWithStackPagesTests pass by implementing the
SmiStackInterpreterWithStackPages. You only need to reimplement function calls and returns
to fit the new behavior described in the previous subsection compared to the interpreter of the
previous chapter.

5.4 Making Calls and Returns across Stack Pages Uncommon

A good StackInterpreter needs to be implemented in a way that returns and calls across stack
pages are uncommon because they are slower than regular calls and returns. Typically, in the case
of recursive fibonnacci, it could be that most of the sends are done across stack pages and the sys-
tem become dog slow.

To avoid this problem, a good stack interpreter keeps a reference to the last stack page that over-
flowed and the number of time it overflowed. Each time a stack page overflows, if it is the last one
that overflowed, the number of overflows is incremented by 1, else the reference to the last stack
page that overflowed is updated and the number of overflow reset. In pseudo-code, that would
mean:

stackPageOverflow: stackPage
lastStackPageThatOverflowed = stackPage
ifTrue: [ numOverflow := numOverflow + 1 ]
ifFalse: [

lastStackPageThatOverflowed := stackPage.
numOverflow := 1 ]

When a new stack page is required, if the current stack page has already overflowed, the inter-
preter decides to copy a certain number of stack frame to new page to make call and return across
stack pages less common. The number of stack frame to copy depends on the number of time the
stack page has overflowed and is bounded by a maximum value. This cheap strategy makes calls
and returns across stack pages uncommon.
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CHA P T E R6
Naive closures in the Context Interpreter

6.1 Introduction

In this chapter, the reader will introduce closures the context interpreter. This chapter deals with
the closure implementation and does not explain what is a closure. If you don’t know what is a
closure, please read first documentation available on the internet about it, such as the chapter 14.
Blocks: a Detailed Analysis of the free online book Deep into Pharo.

A closure is an object or a data structure that references a function and its enclosing environment.
In this implementation, the function is anonymous and the enclosing environment is the context
in which the closure was created, that we call the closure’s outer context, as represented on Figure
6-1.

In addition to regular function, closure’s function activation (contexts representing closure activa-
tions) have a reference to the closure they activated, as emphasized on Figure 6-2.

If the closure is defined in another closure, then the closure’s outer context is a closure context,
which has itself a closure with an outer context. The list of outer context from the closure’s direct

anonymousFunction
outerContext

function name
numArgs

numTemps
max stack size

instructions

sender
programCounter =  3

function
stackPointer = 6

stack

Closure

Context

Function

Figure 6-1 Closure representation.
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Regular Context
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stack

Closure Context

closure

Figure 6-2 Context versus Closure Context.

outer context to the first context which is not a closure activation is called outer context chain.
Such an outer context chain is represented on Figure 6-3. The last context of the chain is called
the closure’s home context. If the closure is not nested in another closure, then the closure outer
context is its home context.

Extending the language

To support closures, the syntax of SmiLang is extended with the operator [ ] and the primitive
operation value.

Closure creation

[ ] is used to create a new closure. [mark the beginning and ]mark the end of the anonymous
fonction held by the closure.

Example

In the following example, the function answers a closure holding the anonymous function answer-
ing 1. Each execution of the function answers a different closure.

Source code:

example01Closure
^ [ 1 ]

Instructions:

example01Closure
<1> createClosure
<2> returnTop

Closure Instructions:

noname
<1> push 1
<2> returnTop

Closure activation

The keyword value represents the primitive operation that activates the closure. In a similar way
to the function call, value creates a new context, but the context is a closure’s activation and not
a simple function activation. Once activated, the closure’s anonymous function is executed and its
result is returned.

Example

In the following example, the value primitive operation in the function activates the closure hold-
ing the anonymous function answering 1, hence the result of the function is 1.
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Naive closures in the Context Interpreter

Source code:

example02ClosureActivation
| temp |
temp := [ 1 ].
^ temp value

Instructions:

example02ClosureActivation
<1> createClosure
<2> storeTemp: 1
<3> pop
<4> pushTemp: 1
<5> activateClosure
<6> returnTop

Closure Instructions:

noname
<1> push 1
<2> returnTop

Values of temporary variables

As [ ] answers a closure, it is now possible for temporary variable to hold either a Smi or a clo-
sure.

We will consider that it is the developer responsability to call the primitive value on a closure and
not on a Smi.

If value is called on a Smi or if a primitive operation on Smis such as + is called with a closure as
operand, the interpreter raises an error and stops executing code.

In a real system, different solutions exist to avoid such runtime errors. For example, a type system
allows the compiler to raise a compilation error if a type missmatch is detected. Alternatively, in
dynamically-typed languages like Smalltalk, the runtime executes a fall-back routine when a prim-
itive operation fails to handle such problems.

Extra features of closure activations

On the contrary to regular context representing functions, context representing a closure activa-
tion can use the closure’s outer context for two different purposes:

• Remote temporary access

• Non local return

Remote temporary access

The first feature, present in most languages having closures, is the access of remote temporary
variables. The closure’s function can access temporary variables that are held not in the current
context, but in any of the context in the closure’s outer context chain.

Here is an example of a closure accessing a remote temporary variable (the instructions are de-
tailled later in the chapter):

example04ClosureRemoteTemp
| remoteTemp |
remoteTemp := 1.
^ [ remoteTemp ] value
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6.2 Extending the instruction set

As you can see, the context representing the activation of the function example04ClosureRe-
moteTemp holds the value of remoteTemp, and the context representing the activation of the clo-
sure [ remoteTemp ] can access its value.

Non local return

The second feature, present at least in Ruby in the form of Procedure returns and in Smalltalk, is
called non local return. When a closure’s activation performs a non local return, it returns from
the closure’s home context instead of the closure’s context sender. To learn more about non local
returns, you can read the section 14.4 Returning from inside a Block from the free online book
Deep into Pharo.

Let’s take two examples:

Source code:

exampleLocalReturn
| temp |
temp := [ 25 ] value.
^ temp + 1

Closure instructions:

noname
<1> push 25
<2> returnTop

Source code:

exampleNonLocalReturn
| temp |
temp := [ ^ 25 ] value.
^ temp + 1

Closure instructions:

noname
<1> push 25
<2> nonLocalReturnTop

In the first case, exampleLocalReturn, the closure has a local return. Upon execution, the tempo-
rary temp is assigned the value 25, then the function answers 26 (25 + 1).

In the second case, exampleNonLocalReturn, the closure has a non local return. Upon execution,
the closure does not return to the temporary assignment, but returns directly to the sender of the
function exampleNonLocalReturn, so the function answers 25.

As shown, in closures, ^ is used for non local returns whereas if nothing is precised the last value
of the closure is returned locally.

6.2 Extending the instruction set

To use closures in the context interpreter, we extend SmiLang with 5 new instructions.

• ActivateClosure

Executing this instruction pops the closure on top of the stack and activates it. If there is some-
thing else than a closure on top of the stack, the interpreter raises an error and stop the execution
of the program.

This operation is very similar to a function call as it creates a new context for the closure’s anony-
mous function. However, the closure activation context needs a reference to the closure in addi-
tion to all the information a regular context has. Hence, closure’s activations are represented as a
separate data structure (in our case, a separate class) as they need an extra field.
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Naive closures in the Context Interpreter

• CreateClosure

This instruction represents a closure creation. Executing this instruction creates a new closure
and pushes it on top of the stack. The closure is created with the anonymous function of the in-
struction and the context that created the closure (the active context at closure creation time).

• NonLocalReturnTop

Executing this instruction returns the execution to the closure’s home context sender instead of
the active context sender. If the closure’s home context is already terminated, the interpreter
raise a BlockCannotReturn exception.

When performing a non local return, all the contexts in-between the closure activation and the
closure’s home context sender need to be terminated. This way, other closures with other home
context will always know if their home context is terminated or not.

There are different ways to represent a terminated context. One possibility is to represent a termi-
nated context as a context which pc is nilled out. This implies nilling out the pc field of the context
upon return and nilling out the pc feld of several contexts in case of non local return.

• PushRemoteTemp

This instruction holds the index of the temporary variable to access but also the number of outer
context that needs to be walked in the outer context chain in order to find the context that holds
the temporary variable to push.

Executing this instruction searches first in the outer context chain the context to access (it looks
for the nth outer context, n being precised in the instruction). Then it pushes on stack the tem-
porary value at the index precised in the instruction from the nth outer context to the top of the
active context’s stack.

• StoreRemoteTemp

Basically this instruction is the same as the PushRemoteTemp instruction with a store instead of a
push.

6.3 Exercise

In this exercise you will extend your ContextInterpreter with a subclass, ClosureContextIn-
terpreter.

Open a Pharo 4 image, load the package SmiLang-ClosureExtension you can find on http://smalltalkhub.

com/mc/ClementBera/3DaysVM/main.

Go to the package tag SmiLang-ClosureExtension>>context interpreter. A SmiClosureCon-
textInterpreter skeleton is given, but many methods are not implemented (they only hold self
shouldBeImplemented).

The SmiClosureContextInterpreterTests have to pass to proceed to the next chapter.

Good luck and have fun !

38

http://smalltalkhub.com/mc/ClementBera/3DaysVM/main
http://smalltalkhub.com/mc/ClementBera/3DaysVM/main


CHA P T E R7
Simplified Closures in the Stack

Interpreter

In this chapter and the following one, you will introduce the closures in the stack interpreter. For
the implementation, we consider as in the chapter 4 that the stack is infinite. It is possible to im-
plement closures on top of a stack using stack pages, but it introduces extra complexity in the
code, espscially for non local returns, whereas it does not introduce new concepts.

These two chapters, especially the next one, are considerablymore complex than the other chap-
ters. As explained in the introduction of this part of the book, they are optional to understand the
rest of this book.

7.1 Problems

The naive closure model described in the previous chapter is nice to understand closure imple-
mentation but is completely broken in the stack interpreter. The main issue lies with terminated
function activations.

A closure has a reference to a function and its enclosing environment. In the case of the context
interpreter, the enclosing environment is the outer context. It can happen that a closure outer
context is terminated, in which case the closure’s activation cannot perform a non local return.
However, it can still access the terminated outer context temporaries.

In the stack interpreter no contexts are present. The closure still needs to reference its enclosing
environment for remote temporary access and non local return. A naive implementation would
be to have the closure referencing directly its outer stack frame. The problem in this case is that
when the outer stack frame execution is terminated, the memory location for the stack frame can
be overridden by new activations and it is very difficult to know if it has been overridden or not.
It is therefore impossible to know if the reference to the outer stack frame still refers to the stack
frame or to other data from the stack.

If the outer stack frame happens to be terminated, we have two issues.

1. Remote temporary access: Firstly, if the closure’s activation tries to access remote tempo-
rary variables, the dead outer stack frame may not hold any more the temporary values. In
fact, the values may have been overriden by new stack frames.

2. Non local returns: Secondly, if the closure’s activation tries to perform a non local return, it
has to figure out if the closure home context is dead to raise a BlockCannotReturn exception
or not. The problem is that the home’s stack frame may be dead but also overridden with
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Figure 7-1 Temp vector referenced by a closure and a stack frame.

another stack frame. It is impossible with a direct pointer to know if the data at the memory
location of the home stack frame corresponds to the home stack frame or something else.

7.2 Solutions

We identified two problems so we need to describe two solutions. In this chapter, you are going to
build a restrictive interpreter that cannot handle non local returns. This implementation solves
the remote temporary access problem, but not the one for non local return. In the next chapter,
you will enhance the interpreter to support non local returns. The Closure representation you will
use for the two stack interpreters with closures have a field named outerStackFrameWrapper.
You will completely ignore this field in this version of the interpreter (but use it in the next chap-
ter).

This chapter now deals only with remote temporary variables access.

Remote temporary access implementation

If a closure outlives its outer stack frame, the outer stack frame field may have been overridden
by new values and we can’t access its temporary variables any more. To solve this problem, the
compiler will identify temporary variables that are accessed from multiple stack frames (at least
one remote access). Such variables values will not be stored on stack, but on an array allocated
outside of the stack, also called temp vector, as shown on figure 7-1. In this implementation, the
temp vector will be a Pharo array.

When a closure is created, if it needs to access remote temporaries, it keeps a reference to a temp
vector in addition to its anonymous function and its outer environment. Specific instructions are
added in the language to create temp vectors, to create closures with a temp vector and to support
access to temporaries in temp vectors. These instructions are discussed in the next subsection.

If a regular function (non closure function) holds an instruction which creates a closure and that
the closure access the regular function temporaries, then the regular function starts with a cre-
ate temp vector instruction. This instruction creates the temp vector and pushes it on top of stack.
The function then stores the temp vector in a temporary variable slot. Further access in the method
to the temporaries accessed from multiple stack frame are done indirectly through the temp vec-
tor.
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7.2 Solutions
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Figure 7-2 Access of the temporary 2 in vector at 3.

Upon closure activation, if the closure has a temp vector reference, the temp vector is pushed on
stack after the arguments and before the temporary variables. The instruction accessing remote
temporary variables will allow the execution to access the temp vector’s values. The instruction
holds the index of the tempVector so it can be accessed as a temporary variable and the index of
the temporary variable in the temp vector, as show on figure 7-2.

Remote temporary variable example

Let’s take an example with a remote temporary access.

Source code:

example04ClosureRemoteTemp
| remoteTemp |
remoteTemp := 1.
^ [ remoteTemp ] value

Instructions:

example04ClosureRemoteTemp
<1> createTempVector of size 1
<2> storeTemp: 1
<3> pop
<4> push 1
<5> storeTemp 1 in vector at 1
<6> pop
<7> createClosureWithVectorAt: 1
<8> activateClosure
<9> returnTop

Closure Instructions:

noname
<1> pushTemp 1 in vector at 1
<2> returnTop
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Simplified Closures in the Stack Interpreter

remoteTemp is accessed both from the function activation and the closure activation, hence it
needs to be put in a temp vector.

1. Function Instructions 1 to 3: the interpreter creates a temp vector of size 1 to be able to
hold the value of remoteTemp. The temp vector is available in the stack frame at the position
of the first temporary variable.

2. Function Instructions 4 to 6: the interpreter assigns the value 1 to remoteTemp. As re-
moteTemp value is stored on a temp vector, it cannot just use a store temp instruction but it
needs to use a store remote temp instruction. This instruction precise both the position of
the temp vector in the temporary variable slots of the stack frame and the position of the
value of remoteTemp in the temp vector.

3. Function Instruction 7: the interpreter creates a closure. The closure is initialized with the
temp vector in position 1 in the temporary variable slots of the stack frame.

4. Function Instruction 8: the interpreter activates the closure. The temp vector held by the
closure is pushed on stack just before the temporary variables local to the closure activation.

5. Closure Instructions: the interpreter access the remote temporary variable value through
the temp vector and answers it.

6. Function Instruction 9: the interpreter finally returns 1.

7.3 Extended instruction set

To use closures in the stack interpreter, we extend SmiLang (the non closure interpreter version)
with 4 new instructions:

• CreateTempVector

Executing this instruction creates a temp vector, represented by a Pharo array in the implemented
interpreter, and pushes it on stack. As the temp vector holds temporary variables values, it needs
to be initialized with 0 (in SmiLang all the temporaries are initialized with 0). The instruction
holds the size of the temp vector to create.

• CreateVectorClosure

This instruction represents a closure creation. Executing this instruction creates a new closure
and pushes the value on top of the stack. The closure is created with the anonymous function of
the instruction and the context that created the closure (the active context at closure creation
time).

In addition, this instruction requires the interpreter to store a reference to the temp vector in the
closure. The temp vector holds the remote temporaries. The temp vector to store can be found in
the current stack frame, it is accessed as a temporary variable using the tempVectorIndex precised
in this instruction. If no tempVectorIndex is specified (tempVectorIndex = nil), then the closure
does not need any temp vector.

• PushVectorTemp

This instruction holds two indexes: the index of the temp vector and the index of the temporary
variable in the temp vector. Executing this instruction is done in 2 steps. Firstly, the interpreter
fetches the temp vector. It is can be accessed in the stack frame as a temporary variable using as
index tempVectorIndex (precised by this instruction). Then it can push on stack the value avail-
able in the temp vector at the correct index, precised in tthis instruction (tempIndex).

• StoreVectorTemp

Same as pushVectorTemp instruction but mutates the temp vector instead of pushing a value on
stack.
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7.4 Exercise

7.4 Exercise

In this ultimate exercise you will extend your StackInterpreter with a subclass, Simplified-
ClosureStackInterpreter. You will subclass directly the StackInterpreter and not the one
with stack pages. It is possible to have a closure stack interpreter with stack pages, but you don’t
need to deal with the complexity of both to understand the concepts.

Open a Pharo 4 image, load the package SmiLang-StackClosureExtension you can find on http:

//smalltalkhub.com/mc/ClementBera/3DaysVM/main.

Go to the package tag SmiLang-StackClosureExtension>>stack interpreter. A SmiSimpli-
fiedClosureStackInterpreter skeleton is given, but many methods are not implemented (they
only hold self shouldBeImplemented).

The SmiSimplifiedClosureStackInterpreterTests have to pass to proceed to the next chap-
ter.

Good luck and have fun !
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CHA P T E R8
Real Closures in the Stack Interpreter

In this chapter we extend the previous interpreter to support non local returns.

The general idea behind this implementation is that we do not want to make normal returns more
complex than how they were in the previous interpreter last chapter. We can slow down a bit non
local returns, as they are uncommon, but we can’t slow down regular returns, which are very com-
mon.

If the implementation requires each regular return to do a check, for example checking if there
is a closure referencing the stack frame where the return happens and do something if this is the
case, the interpreter is then twice slower than the implementation described in this chapter. This
implementation, even though fairly complex, does not add any overhead on normal returns. Only
non local returns are slower than they could be, but as they are much less common than normal
return, the performance is overall way faster.

8.1 Non local return implementation

This is one of the trickiest part of an efficient Smalltalk VM implementation. Now that remote
temporary variables are accessed through a temp vector, the closure needs to keep a reference
to its outer stack frame activation only for non local returns.

Stack frame representation

To support non local returns, we change our stack frame representation. Right after the frame
pointer and just before the temporary variable slots, the stack frame keeps two extra fields, as
shown on figure 8-1. This implies that accessing temporary variables in this interpreter requires
to shift the framePointer by an additionnal 2 for the extra two fields.

Stack frame creation

At stack frame creation time (function call or closure activation), the stack pointer needs to be
pushed by an additionnal 2 to make room for the two extra fields. The two fields are used for the
potential stack frame wrapper (field 1) and a reference to the closure activated in case of closure
activation (field 2).

The two fields are initialized as follow:

1. Stack frame wrapper: set to a flag (for example the symbol #notWrapped) marking the
stack frame as not being wrapped as shown on figures 8-2 and 8-3.
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Figure 8-1 New stack frame representation.

2. Closure: It depends if the stack frame represent a closure activation or not (we call named
function activation a non closure activation):

• Named function activation: the closure field is initialized to a flag marking a non closure acti-
vation, for example #noClosure, as shown on figure 8-2.

• Closure activation: the closure field is initialized with the closure being activated, as repre-
sented on figure 8-3.

Thanks to the closure field, the interpreter can access the closure of the current activation rela-
tively to the frame pointer or a flag marking a non closure activation (framePointer + 2).

As explained, a stack frame, including a stack frame representing a closure activation, is always
initialized not wrapped, i.e., with a #notWrapped flag in the stack frame pointer field.

Closure creation

When a closure is created, the active stack frame, representing the enclosing environment of the
closure, needs to be wrapped (if not already wrapped). Wrapping a stack frame is two step process,
a non wrapped stack frame is shown on figure 8-4 and a wrapped stack frame is shown on figure
8-5:

1. A stack frame wrapper is created. A stack frame wrapper is a data structure allocated aside
from the stack. It has a single field that refers to the frame pointer location of the stack
frame it wraps. The stack frame wrapper created refers to the active stack frame, represent-
ing the enclosing environment of the closure.
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Figure 8-2 Initialized Stack Frame (named function).
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Figure 8-3 Initialized Stack Frame (closure).



Real Closures in the Stack Interpreter

Stack Frame
framePointer

temporaries

arguments

stack frame wrapper
closure

function
pc

spilled values

this field holds the 
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Figure 8-4 Stack Frame (not wrapped).

Wrapped Stack Frame
framePointer

temporaries

arguments

stack frame wrapper
closure

stackFramePointer

function
pc
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outerFrameWrapper

tempVectorOrNil

Stack Frame Wrapper

Closure
spilled values

Figure 8-5 Wrapped Stack Frame.

2. The stack frame wrapper field of the stack frame is edited to refer to the stack frame wrap-
per.

The closure, instead of keeping a reference to its outer context as in the context interpreter, keeps
a reference to its outer stack frame wrapper as shown on figure 8-5.

Accessing the wrapper from the stack frame

Each stack frame knows if it is already wrapped by checking its stack frame wrapper field:

• If the value is the flag set at stack frame creation time, then it is not wrapped, as shown on
figure 8-4.

• If the value is not the flag, then it is wrapped and the value of the field is the stack frame
wrapper, as described on figure 8-5.

Accessing the stack frame from the wrapper

It’s more complex for the stack frame wrapper to access its frame because it needs to know if the
stack frame it wraps is still valid. This is a two step operations.
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8.2 Exercise

Firstly, the stack frame wrapper needs to figure out if the field on stack it holds is still a frame
pointer. If the stack frame has been terminated, it may have been overrided by other frames of dif-
ferent sizes and the field held may be a random field in another stack frame. To do so, the stack
frame wrapper walks the stack starting at the interpreter’s active frame pointer from a frame
pointer to the next one, until it finds a frame pointer matching the field it holds. If it finds a match-
ing frame pointer, then the stack frame wrapper references a stack frame, but the stack frame
wrapper does not know yet if it references the stack frame it wraps or another one. If no match-
ing frame pointer is found, then the stack frame is dead.

Secondly, the stack frame wrapper now knows it references a stack frame. It can then read the
stack frame wrapper field of the stack frame. If the field refers back to the stack frame wrapper
itself, then the correct stack frame is referenced. If it refers to the #notWrapped flag or another
stack frame wrapper, then the stack frame is dead and has been overridden by another stack frame.

Performing a non local return

As described in the previous subsection, to execute this instruction the interpreter needs to walk
up the outer stack frame chain to find the home stack frame. If any outer stack frame relation is
broken (a stack frame wrapper does not refer to its stack frame any more), then a BlockCannotRe-
turn exception is raised. Once the home stack frame is found, the execution can return the the
home’s sender stack frame, pushing the correct non local value on top of its stack.

8.2 Exercise

In this last exercise you will extend your SimplifiedClosureStackInterpreter with a subclass,
RealClosureStackInterpreter.

Open a Pharo 4 image, load the package SmiLang-StackClosureExtension you can find on http:

//smalltalkhub.com/mc/ClementBera/3DaysVM/main.

Go to the package tag SmiLang-StackClosureExtension>>stack interpreter. A SmiRealClo-
sureStackInterpreter skeleton is given, but many methods are not implemented (they only hold
self shouldBeImplemented).

The SmiRealClosureStackInterpreterTests have to pass to proceed to the next chapter. This
exercise is more difficult than the previous ones because of the non local returns implementation.

Good luck and have fun !

8.3 Discussion: non local returns and stack pages

If the interpreter supports both non local returns and stack pages, there are a few more difficul-
ties. The stack frame wrapper, to refer to a field on stack, needs to refer to a stack page and the
index of the field in the stack page instead of just the index of the field on stack. In addition, when
a stack frame wrapper checks if the field it holds is indeed a frame pointer, the interpreter needs
to walk up the stack including stack page switches.
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CHA P T E R9
Discussion

9.1 What about Contexts and Stack frames in Smalltalk ?

In Smalltalk, from the language, the programmer has the impression that a context interpreter is
running. This is convenient as the programmer can manipulate the contexts as any other objects.
This feature is used for the implementation of the debugger, exceptions and continuations.

In the VM, the interpreter is implemented as a stack interpreter for performance. Stack frames are
mapped to contexts on demand.

9.2 Context-to-Stack Mapping

The mapping from stack frames to context on demand is usually referred as the Context-to-Stack
Mapping. Imagine that on all your interpreter, in addition to the public API interpreter:, an-
other API called currentContext would be available. In the case of the context interpreters, the
method currentContext would be implemented as a getter:

SmiContextInterpreter >> currentContext
^ currentContext

However, in the case of the stack interpreter, the interpreter needs to recreate a context from its
state and the state of the stack. All the information the context needs is available:

• The temporaries and spilled values are available on the active stack frame.

• The arguments are vailable on the previous stack frame.

• The program counter and the function are available directly in the interpreter variables for
the active stack frame, or on stack for the other stack frames.

• The sender can be lazily recreated from the previous stack frame.

All the fields can be read that way, and at the exception of the sender field, all the fields can be
written into. The only problem remaining is how to set the sender field of a context mapped to
a stack frame. This last point is done by splitting the active stack page in two, between the stack
frame having its sender set and the previous one, and the sender field can then be set by changing
for a given stack page the stack page it has to return to in case of a return across stack pages.

Obviously, as execution of the program keeps going, the state of the context object as to change.
To avoid having to edit the context objectc at each instruction executed, the context recreated is
usually a proxy to the stack frame. Referencing a stack frame is not possible directly, but it can be
done through a technique similar to the stack frame wrapper explained in the preious chapter.
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Discussion

For more information about the Context-to-Stack Mapping, you can read on the Cog blog1 the arti-
cles named Under Cover Contexts and the Big Frame-Up and An Arranged Marriage that deals
precisely with this problem.

9.3 What about Smalltalk Context and sends compared to SmiLang ?

A Smalltalk send does a lookup to find the method to activate and then activate the method. In
SmiLang, there is no lookup as the calls are static, but the function activation in SmiLang is very
similar to the Smalltalk method activation.

About the contexts, there are one main difference. In Smalltalk, the receiver is for the function
activation the equivalent of the first argument. However, the receiver is special as it’s the only
variable from which the interpreter can directly access its instance variables and it’s the variable
used for the lookup, so it is stored in a specific field called receiver.

For performance, the Pharo implementation of context chose to inline directly the array used by
the context’s stack in the context object (context are initialized with a fixed number of slots that
can be accesed with at: and at:put:). Closures are slightly more complex in Pharo than in Smi-
Lang, because there are a few optimisations to decrease their memory footprint and improve their
performance.

You can now look into the Context class in Pharo and verify that you understand what the in-
stance variables correspond to and how they are used. You can also inspect some contexts and
verify that you understand their states.

9.4 Closures in mainstream languages

As closures are becoming more and more popular, mainstream programming languages such as
Java adopted them. Many of these languages have closures able to access remote temporary vari-
ables but not performing non local returns. This implies that the closure representation can be
simplified to an anonymous function and a temp vector, as the outer context / outer stack frame
wrapper is not needed any more.

A few languages, like Ruby, allow the programmer to use non local returns in their closures.

9.5 Correction

In the repository http://smalltalkhub.com/mc/ClementBera/3DaysVM/main, one can find a package
named SmiLang-Correction. It includes a possible implementation for each interpreter.

1http://www.mirandabanda.org/cogblog/

52

http://www.mirandabanda.org/cogblog/
http://smalltalkhub.com/mc/ClementBera/3DaysVM/main
http://www.mirandabanda.org/cogblog/

	Illustrations
	Concepts
	Outline
	Thanks



	Theory: Stack Implementation
	Naive Implementation: Linked List 
	Naive Implementation: Array 
	Advanced Implementations
	Advanced Implementations: Fixed-sized Stack
	Advanced Implementations: Copying Stack
	Advanced Implementations: Stack Page Stack
	Example
	Discussion



	SmiLang: A Simple Integer Language
	SmiLang Basics
	SmiLang Examples
	Function one
	Function add:to:
	Function example07TempAndCallAndCallArgs
	We are set


	Context Interpreter
	What is a Context ?
	Context.
	Function.
	Stack.
	Two Different Stacks.


	Concrete Example: Activation of function add:to:
	Example 1: Interpreting a simple expression
	Example 2: Interpreting a sequence of affectations
	Calls and Returns
	Function Calls
	Returns

	Building a Naive Context Interpreter
	Getting Prepared 
	Key Classes


	Simple Stack Interpreter
	Inherent Limits of the Context Intepreter
	Call Stack
	Call Stack Representation
	Interpreter State
	Stack Frame Representation
	Active Stack Frame
	Concrete Example: Activation of the Function add:to:

	Temporary Variable Access
	TempIndex for Argument
	TempIndex for a Temporary Variable

	Call Instruction
	Return Instruction
	Build a Stack Interpreter

	Stack pages
	Problem
	Solution
	Implementation

	Exercise
	Making Calls and Returns across Stack Pages Uncommon

	Naive closures in the Context Interpreter
	Introduction
	Extending the language
	Closure creation 
	Closure activation
	Values of temporary variables

	Extra features of closure activations
	Remote temporary access
	Non local return


	Extending the instruction set
	Exercise

	Simplified Closures in the Stack Interpreter
	Problems
	Solutions
	Remote temporary access implementation
	Remote temporary variable example

	Extended instruction set
	Exercise

	Real Closures in the Stack Interpreter
	Non local return implementation
	Stack frame representation
	Stack frame creation
	Closure creation
	Accessing the wrapper from the stack frame
	Accessing the stack frame from the wrapper
	Performing a non local return

	Exercise
	Discussion: non local returns and stack pages

	Discussion
	What about Contexts and Stack frames in Smalltalk ?
	Context-to-Stack Mapping
	What about Smalltalk Context and sends compared to SmiLang ?
	Closures in mainstream languages
	Correction


