
FFI
The good, the bad and the ugly

Esteban Lorenzano
(The Pharo firefighter)

Several options, none of them very clear.

Current status of FFI:

A mess :(

Three options:
FFI, AlienFFI, NB-FFI

FFI

Basic types and not much more

you can declare your own types (but nobody knows
how, anyway)

No callbacks

There is a version of Eliot with callback support, but
still not integrated into Pharo.

FFI Characteristics

Pros

Simple

Cons

No callbacks (yet)

cdecl/apicall, module lookup

AlienFFI

Object per method

GC of external memory allocations

Callbacks

Uses same primitives as FFI

AlienFFI Characteristics
Pros

Object-oriented approach

Powerful

Nice callback implementation

Cons

More complex to use than plain FFI

Abandoned to a enhanced version of FFI (It should be considered legacy)

A bit slower

NativeBoost FFI

Primitive call + binary code generation magic

Nice function call and type definition

Callbacks (though slower than Alien)

Uses assembly

NB-FFI Characteristics
Pros

all-in-image approach

nice syntax declaration

fast

Cons

no platform independence (no ARM, no x86_64, etc.)

each new platform needs a new ASMJIT

different assembly knowledge (and well… assembly knowledge in general)

VirtualCPU can help here, but you still need to know the platform architecture

How to fix the mess?
We need ONE solution that works in all cases.

Sadly, NativeBoost requires a lot of effort that we
cannot spend on it.

Happily, there is an existing FFI implementation,
maintained by Eliot, that we can use.

And we can take parts from NativeBoost too! (like the
syntax declaration)

WIP

NB-FFI to FFI

ThreadFFI

uFFI

WIP: NB-FFI to FFI
Replaces ASM generated part with plain FFI primitive calls.

Portable (to ARM, x86_64, etc.)

No executable memory (can be used in scenaries like
iPhone or with security constraints)

No need to know assembly to maintain it (yes, that’s a pro
for me ;)

ASMJIT will be pluggable and still usable

WIP: ThreadFFI

It will allow us to execute expensive foreign calls (i.e.
SQL queries) in a separate native thread, and callback
the system when finished.

WIP: uFFI

Specific bytecodes (pointer allocation, primitive types,
function calling)

Fast due direct memory manipulation and Cog JIT

Common interface for different backends (it will use NB
syntax, too)

Summary

One FFI that will work on all platforms is arriving (it will
be in Pharo 4 or early Pharo 5)

Threaded FFI will come soon after

uFFI, with important enhancements will arrive some
time later

