SMACC: BEHIND THE REFACTORINGS

Jason Lecerf & Thierry Goubier

' BINSTITUT
CARNOT &
PARIS-SACLAY

May 17, 2017
e

TABLE OF CONTENTS

@ Introduction

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 2/36

B The Smalltalk Compiler Compiler is a parser generator for
Smalltalk

m Originally developed by John Brant & Don Roberts

B Used in Moose, Synectique, CEA, RefactoryWorkers

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 3/36

AN CONTEXT

Ceatech

m Architecture to generate the front-end of compilers

= for DSL parsing

= for program analysis

= for program migration

= for refactoring and transformation of source code

= for compiler front-end implementation

B SmaCC is written in Smalltalk and generate parsers in
Smalltalk

m It has the infrastructure for generating parsers in other
programming languages

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 4/36

EXAMPLE OF USE

What you want to do:
m Find pattern in code written in a (niche) language

B Refactor these patterns into something new

What you will need:

m The grammar for your language (if it does not already exists
in SmaCC)

B Your patterns and related transformations

B Your program

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 5/36

TABLE OF CONTENTS

Q Overview of SmaCC
@ General workflow
@ From a user point of view

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 6/36

LAl CAPABILITIES

Ceatech

Automated generation of LR parsers
B Input: the specification of the grammar

m Qutput: parser for the grammar

= can create arbitrary code run at parse time
= can create an AST!

lAbstl’act S:‘ntax Tree SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 7:36

Aol SMACC GENERATION PIPELINE

Cceatech
Grammar Program

Parser
Smalltalk code

Generic T
> visitor T arbitrary T,
... code
ﬂ

E generated [:] tool :I user input

Figure: SmaCC overall pipeline

SmacCC parser generate
generator

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 8/36

till SMACC INPUT: THE GRAMMAR

Ceatech

m In a slightly modified BNF? form

CondExp
: ArithExp
BitwiseExp

RelationalExp
#if NB_BITS < 16
BoolExp

|

|

|

| TernaryExp #elif NB_BITS < 32
| <lpar> CondExp <rpar> #els§

| "defined(" Id <rpar> #endif

| Id
| Number

’

2Ba(:hus—Naur Form: a meta—gﬁaﬁfﬁ]&rrewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 9:36

SMACC PARSER GENERATION

The generation:
m Produces a DFA lexer (the scanner)
m Produces either LR(1) or LALR(1) parsers

m Can be augmented to support GLR parsing
m Generate methods for parse table transitions

= not exactly the parse tables themselves (optimizations were
done)
= no tables, just methods for the lexer

LR Standard parser for context-free grammars
LALR Merge states resulting in a smaller memory footprint
GLR Try all the possible transitions for a state

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 10/36

SMACC PARSER GENERATION OUTPUT

The generated parser is a Smalltalk package containing:
B a Scanner class
B a Parser class
B the AST node classes
B a generic AST visitor
Running the parser on an input pogram:
m produce AST nodes instances

B execute arbitrary code given to the grammar

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 11/36

list GRAMMAR WITH ARBITRARY CODE EXECUTION

Ceatech

Expression
: Expression ’left’ "+" Expression ’right’
{left + right}
| Expression ’left’ "-" Expression ’right’
{left - right}
| Expression ’left’ "x" Expression ’right’
{left * right}
| Expression ’left’ "/" Expression ’right’
{left / right}
| Expression ’left’ Expression ’right’
{left raisedTo: right}
| "(" Expression ’expression’ ")" {expression}
| Number ’number’ {number}

Number
<number > ’numberToken’
{numberToken value asNumber}

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 12/36

8 GRAMMAR WITH AST PRODUCTION

Ceatech

Expression

Expression ’left’ "+" ’op’ Expression ’right’
{{Expression}}
Xpression eft - o Xpression right
|Ep . ’lf’""’p’Ep : "gh’
{{Expression}}
Xpression eft * o Xpression right
| Exp + >left’ "x" ‘op’ Exp s ‘right’
{{Expression}}
Xpression eft o Xpression right
|Ep s :1f7n/n zp; Ep 3 bl 'gh’
{{Expression}}
| Expression ’left’ """ ’op’ Expression ’right’
{{Expression}}
| "(" Expression ’expression’ ")" {{}}
| Number

Number
<number > {{Number}}

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 13/36

TABLE OF CONTENTS

© The rewrite engine
@ The engine
@ Anatomy of the rewrites
e And RB

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 14/36

ol EXTENDED SMACC PIPELINE

Ceatech

[Pattern | [Transformation |

l l \J
SmaCC parser generate Parser SmacCC rewrite
—.—)—
m Smalltalk code - engine
¢ rewriting

Rewritten program

Dgenerared D tool l:l user input

Figure: Extended SmaCC pipeline

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 15/36

A8 PRECONDITIONS

Ceatech

m Parser for the language

m Enable GLR parsing in the grammar

B Declare a pattern token in the grammar

= usually in between backquotes since they are used in barely
any language

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 16/36

Jtill INPUT TO THE REWRITE ENGINE

Parser: MyExpressionParser
m Pattern S>> gt 4+ bf<<<
B Metavariables ->
m Transformation >>>‘a’ ‘b +<<<

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 17/36
S

REWRITTEN OUTPUT EXAMPLE

Input program:

(3 + 4) + (4 + 3)

Rewritten program using the rewrite engine:

34 + 4 3 + +

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 18/36

A8 ANATOMY OF THE REWRITE ENGINE

Ceatech

\ Pattern | |Transf0rmation

‘ arsin
Grammar Parser ¢ P 9 ¢

Program Pattern
AST AST forest

| unification |

[
Rewrite match
w/ context

‘ source rewriting

Rewritten program

Figure: SmaCC rewriting process

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 19/36

PARSING OF THE PATTERN STRING

m Metavariables can match any nodes (unless specified
otherwise)

= can be modified to match list of nodes or specific types of
nodes
B Use the GLR parser to parse the pattern

m Try all the possible starting symbols (entry points) of the
grammar

= ex: Methods, expressions, method call
= not only the top entry point (often " Program™)

B Get all the possible ASTs for the pattern

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 20/36

PRELIMINARY OPERATIONS

Q Parse program using the GLR parser
= Produces the program AST

Q Parse pattern using the GLR parser
= If there are conflicts: we get a forest of trees
= If there are pattern nodes (metavariables): we get a forest of
trees if valid for the grammar
= Otherwise: we get a single tree

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 21/36

SIMPLIFIED SPLITFORPATTERNTOKEN

if currentToken = patternToken then
for all symbol in {tokens OR non-terminal nodes} do
actions ToProcess <—all possible LR actions for symbol
for all LR action in actionsToProcess do
Check if action was not already performed
if symbol = Token OR
(symbol = Node AND action = reduction) then
Add a token interpretation to the current token
Try to perform current LR action
else if symbol = Node AND action = shift then
stateStack add new ambiguous state
end if
end for
end for
Remove current pattern token state

end if SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 22 :36

MATCHING OF THE PATTERN

Based on ambiguity handling by GLR

B Reuses the parser for your grammar

B Based on the parse tables of said parser

m When parsing a pattern token:
= Try all the valid action-token combinations (transitions) for the
current state
= When conflicts arise (i.e. more than one transition is possible),
fork the parser

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 23/36

A8 ANATOMY OF THE REWRITE ENGINE

Ceatech

\ Pattern | |Transf0rmation

‘ arsin
Grammar Parser ¢ P 9 ¢

Program Pattern
AST AST forest

| unification |

[
Rewrite match
w/ context

‘ source rewriting

Rewritten program

Figure: SmaCC rewriting process

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 24/36

UNIFICATION ALGORITHM

Require: patternForest, program Tree
for all programNode in programTree do
> Depth first traversal
for all patternTree in patternForest do
for all patternNode in patternTree do
if patternNodeclass = programNodeclass then
Tries to match patternNode subnodes with
programNode subnodes
else
continue
end if
end for
end for
end for

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 25/36

UNIFICATION ALGORITHM

Program Pattern matching
X+2*y ‘a’ ‘op{nodeClassName: #0p} b’
[Match 1 | [Match 2 |

(Expressi(;a;)

\

@

res Y v\

Id) (Op)(Num)Op) | Id (Expression) ¢ Expressmn\)

N

id Op | (Num) C:éfpressic_Jri) Op "Nurr_1_,

Figure: SmaCC rewriting process

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 26/36

AN EQUALITY

Ceatech

ArgumentlListPar
"(" (Expression ’argument’
("," Expression ’argument’)x)7 ")"

Node equality Class are identical and every subnodes, subtokens
match

Token equality Both values are identical (same string)
m Here: the left and right parenthesis tokens

Node collection equality Every individual node matches
m Here: the list of n — 1 commas

Token collection equality Every individual token matches
m Here: the list of n Expression arguments

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 27/36

CONTEXT & METAVARIABLE BINDING

Program Metavariable binding
X+2*y “a’ “op{nodeClassName: #0p}" "b° —> "a’ "b” "op”

>

Ta L
/7T7\ Match 2
Id O.p, ‘Num)(0p) (1d

‘ x ‘ + ‘ 2 | * | y | | b |Expression:2ty>

Figure: SmaCC binding & rewriting process

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 28/36

A8 ANATOMY OF THE REWRITE ENGINE

Ceatech

\ Pattern | |Transf0rmation

‘ arsin
Grammar Parser ¢ P 9 ¢

Program Pattern
AST AST forest

| unification |

[
Rewrite match
w/ context

‘ source rewriting

Rewritten program

Figure: SmaCC rewriting process

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 29/36

8 REWRITING

Ceatech

B When nodes match, they are stored in the context

m Even if it seems intuitive, SmaCC does not perform AST
rewriting
= |s rewriting a part of a tree really that simple ?
= And what if | rewrite in another programming language 7

m When rewriting, only transform the source of the nodes to the
source of the transform

= i.e.. the source of the transform is not parsed

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 30/36

8 WHAT ABOUT RB ?

Ceatech

B RB and SmaCC share the same creators

m But Smalltalk is a very simple language (to parse)
= |t is simple to specify a pattern tree directly
= Use a bit the parser to complete the pattern tree
= Rule: a pattern is valid Smalltalk code
= But may match a slightly different tree (message)
B Subtree matching algorithm is exactly the same as in SmaCC

= For example, see
= RBPatternMethodNode>>#match:inContext:

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 31/36

TABLE OF CONTENTS

Q Final words

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 32/36

iidll SMACC APPROACH

m Put some (most) of the complexity in the parser
B Use reflexivity on the grammar

= The grammar specify all correct phrases (all valid sequences of
tokens)

= The AST directives specify all possibles nodes and trees of
nodes (complete type specification)

= The parser contains all that information in the state tables

= Query it!

m Match and rewrite (on a large scale... over a million lines of
code)

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 33/36

CONCLUSION

B SmaCC is a parser generator extended with pattern matching
and rewriting capabilities

B Uses the parser as a way to reflect on the grammar and build
pattern trees

m Tree traversal for matching is depth first (ASTs are not very
deep)

m Generalization of the Refactoring Browser in the case of an
"arbitrary” grammar

B Used extensively by John Brant, Thierry Goubier and others...

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 34/36

kil WIP: SMACC BOOKLET

Ceatech

Tutorial and documentation book Smacc: a
for SmaCC Compiler-Compiler

John Brant, Jason Lecerf, Thierry Goubier,
Stéphane Ducasse

SmaCC & rewriting | Jason Lecerf & Thierry Goubier | May 17, 2017 | 35/36

Thank you!

Commissariat & I'énergie atomique et aux énergies alternatives
Campus Saclay Nano-Innov | F-91191 Gif-sur-Yvette Cedex
www-list.cea.fr

Etablissement public 3 caractére industriel et commercial | RCS Paris B 775 685 019

	Introduction
	Overview of SmaCC
	General workflow
	From a user point of view

	The rewrite engine
	The engine
	Anatomy of the rewrites
	And RB

	Final words

