
SMACC: BEHIND THE REFACTORINGS

Jason Lecerf & Thierry Goubier

May 17, 2017



TABLE OF CONTENTS

1 Introduction

2 Overview of SmaCC
General workflow
From a user point of view

3 The rewrite engine
The engine
Anatomy of the rewrites
And RB

4 Final words

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 2/36



SMACC

The Smalltalk Compiler Compiler is a parser generator for
Smalltalk

Originally developed by John Brant & Don Roberts

Used in Moose, Synectique, CEA, RefactoryWorkers

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 3/36



CONTEXT

Architecture to generate the front-end of compilers

for DSL parsing
for program analysis
for program migration
for refactoring and transformation of source code
for compiler front-end implementation

SmaCC is written in Smalltalk and generate parsers in
Smalltalk

It has the infrastructure for generating parsers in other
programming languages

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 4/36



EXAMPLE OF USE

What you want to do:

Find pattern in code written in a (niche) language

Refactor these patterns into something new

What you will need:

The grammar for your language (if it does not already exists
in SmaCC)

Your patterns and related transformations

Your program

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 5/36



TABLE OF CONTENTS

1 Introduction

2 Overview of SmaCC
General workflow
From a user point of view

3 The rewrite engine
The engine
Anatomy of the rewrites
And RB

4 Final words

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 6/36



CAPABILITIES

Automated generation of LR parsers

Input: the specification of the grammar

Output: parser for the grammar

can create arbitrary code run at parse time
can create an AST1

1Abstract Syntax Tree SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 7/36



SMACC GENERATION PIPELINE

Figure: SmaCC overall pipeline

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 8/36



SMACC INPUT: THE GRAMMAR

In a slightly modified BNF2 form

CondExp

: ArithExp

| BitwiseExp

| RelationalExp

| BoolExp

| TernaryExp

| <lpar > CondExp <rpar >

| "defined (" Id <rpar >

| Id

| Number

;

#if NB_BITS < 16

#elif NB_BITS < 32

#else

#endif

2Bachus-Naur Form: a meta-grammarSmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 9/36



SMACC PARSER GENERATION

The generation:

Produces a DFA lexer (the scanner)

Produces either LR(1) or LALR(1) parsers

Can be augmented to support GLR parsing

Generate methods for parse table transitions

not exactly the parse tables themselves (optimizations were
done)
no tables, just methods for the lexer

LR Standard parser for context-free grammars

LALR Merge states resulting in a smaller memory footprint

GLR Try all the possible transitions for a state

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 10/36



SMACC PARSER GENERATION OUTPUT

The generated parser is a Smalltalk package containing:

a Scanner class

a Parser class

the AST node classes

a generic AST visitor

Running the parser on an input pogram:

produce AST nodes instances

execute arbitrary code given to the grammar

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 11/36



GRAMMAR WITH ARBITRARY CODE EXECUTION

Expression

: Expression ’left ’ "+" Expression ’right ’

{left + right}

| Expression ’left ’ "-" Expression ’right ’

{left - right}

| Expression ’left ’ "*" Expression ’right ’

{left * right}

| Expression ’left ’ "/" Expression ’right ’

{left / right}

| Expression ’left ’ "^" Expression ’right ’

{left raisedTo: right}

| "(" Expression ’expression ’ ")" {expression}

| Number ’number ’ {number}

;

Number

: <number > ’numberToken ’

{numberToken value asNumber}

;

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 12/36



GRAMMAR WITH AST PRODUCTION

Expression

: Expression ’left ’ "+" ’op’ Expression ’right ’

{{ Expression }}

| Expression ’left ’ "-" ’op’ Expression ’right ’

{{ Expression }}

| Expression ’left ’ "*" ’op’ Expression ’right ’

{{ Expression }}

| Expression ’left ’ "/" ’op’ Expression ’right ’

{{ Expression }}

| Expression ’left ’ "^" ’op’ Expression ’right ’

{{ Expression }}

| "(" Expression ’expression ’ ")" {{}}

| Number

;

Number

: <number > {{ Number }}

;

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 13/36



TABLE OF CONTENTS

1 Introduction

2 Overview of SmaCC
General workflow
From a user point of view

3 The rewrite engine
The engine
Anatomy of the rewrites
And RB

4 Final words

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 14/36



EXTENDED SMACC PIPELINE

Figure: Extended SmaCC pipeline

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 15/36



PRECONDITIONS

Parser for the language

Enable GLR parsing in the grammar

Declare a pattern token in the grammar

usually in between backquotes since they are used in barely
any language

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 16/36



INPUT TO THE REWRITE ENGINE

Pattern

Metavariables

Transformation

Parser: MyExpressionParser

>>>‘a‘ + ‘b‘<<<

->

>>>‘a‘ ‘b‘ +<<<

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 17/36



REWRITTEN OUTPUT EXAMPLE

Input program:

(3 + 4) + (4 + 3)

Rewritten program using the rewrite engine:

3 4 + 4 3 + +

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 18/36



ANATOMY OF THE REWRITE ENGINE

Figure: SmaCC rewriting process

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 19/36



PARSING OF THE PATTERN STRING

Metavariables can match any nodes (unless specified
otherwise)

can be modified to match list of nodes or specific types of
nodes

Use the GLR parser to parse the pattern

Try all the possible starting symbols (entry points) of the
grammar

ex: Methods, expressions, method call
not only the top entry point (often ”Program”)

Get all the possible ASTs for the pattern

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 20/36



PRELIMINARY OPERATIONS

1 Parse program using the GLR parser

Produces the program AST

2 Parse pattern using the GLR parser

If there are conflicts: we get a forest of trees
If there are pattern nodes (metavariables): we get a forest of
trees if valid for the grammar
Otherwise: we get a single tree

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 21/36



SIMPLIFIED SPLITFORPATTERNTOKEN

if currentToken = patternToken then
for all symbol in {tokens OR non-terminal nodes} do

actionsToProcess ←all possible LR actions for symbol
for all LR action in actionsToProcess do

Check if action was not already performed
if symbol = Token OR

(symbol = Node AND action = reduction) then
Add a token interpretation to the current token
Try to perform current LR action

else if symbol = Node AND action = shift then
stateStack add new ambiguous state

end if
end for

end for
Remove current pattern token state

end if SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 22/36



MATCHING OF THE PATTERN

Based on ambiguity handling by GLR

Reuses the parser for your grammar

Based on the parse tables of said parser

When parsing a pattern token:

Try all the valid action-token combinations (transitions) for the
current state
When conflicts arise (i.e. more than one transition is possible),
fork the parser

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 23/36



ANATOMY OF THE REWRITE ENGINE

Figure: SmaCC rewriting process

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 24/36



UNIFICATION ALGORITHM

Require: patternForest, programTree
for all programNode in programTree do
. Depth first traversal

for all patternTree in patternForest do
for all patternNode in patternTree do

if patternNodeclass = programNodeclass then
Tries to match patternNode subnodes with

programNode subnodes
else

continue
end if

end for
end for

end for

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 25/36



UNIFICATION ALGORITHM

Figure: SmaCC rewriting process

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 26/36



EQUALITY

ArgumentListPar

: "(" (Expression ’argument ’

("," Expression ’argument ’)* )? ")"

Node equality Class are identical and every subnodes, subtokens
match

Token equality Both values are identical (same string)

Here: the left and right parenthesis tokens

Node collection equality Every individual node matches

Here: the list of n − 1 commas

Token collection equality Every individual token matches

Here: the list of n Expression arguments
SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 27/36



CONTEXT & METAVARIABLE BINDING

Figure: SmaCC binding & rewriting process

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 28/36



ANATOMY OF THE REWRITE ENGINE

Figure: SmaCC rewriting process

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 29/36



REWRITING

When nodes match, they are stored in the context

Even if it seems intuitive, SmaCC does not perform AST
rewriting

Is rewriting a part of a tree really that simple ?
And what if I rewrite in another programming language ?

When rewriting, only transform the source of the nodes to the
source of the transform

i.e.: the source of the transform is not parsed

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 30/36



WHAT ABOUT RB ?

RB and SmaCC share the same creators

But Smalltalk is a very simple language (to parse)

It is simple to specify a pattern tree directly
Use a bit the parser to complete the pattern tree
Rule: a pattern is valid Smalltalk code
But may match a slightly different tree (message)

Subtree matching algorithm is exactly the same as in SmaCC

For example, see
RBPatternMethodNode>>#match:inContext:

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 31/36



TABLE OF CONTENTS

1 Introduction

2 Overview of SmaCC
General workflow
From a user point of view

3 The rewrite engine
The engine
Anatomy of the rewrites
And RB

4 Final words

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 32/36



SMACC APPROACH

Put some (most) of the complexity in the parser

Use reflexivity on the grammar

The grammar specify all correct phrases (all valid sequences of
tokens)
The AST directives specify all possibles nodes and trees of
nodes (complete type specification)
The parser contains all that information in the state tables
Query it!

Match and rewrite (on a large scale... over a million lines of
code)

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 33/36



CONCLUSION

SmaCC is a parser generator extended with pattern matching
and rewriting capabilities

Uses the parser as a way to reflect on the grammar and build
pattern trees

Tree traversal for matching is depth first (ASTs are not very
deep)

Generalization of the Refactoring Browser in the case of an
”arbitrary” grammar

Used extensively by John Brant, Thierry Goubier and others...

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 34/36



WIP: SMACC BOOKLET

Tutorial and documentation book
for SmaCC

SmaCC & rewriting Jason Lecerf & Thierry Goubier May 17, 2017 35/36



Thank you!

Commissariat à l’énergie atomique et aux énergies alternatives

Campus Saclay Nano-Innov F-91191 Gif-sur-Yvette Cedex
www-list.cea.fr

Établissement public à caractère industriel et commercial RCS Paris B 775 685 019


	Introduction
	Overview of SmaCC
	General workflow
	From a user point of view

	The rewrite engine
	The engine
	Anatomy of the rewrites
	And RB

	Final words

