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Goal of today

 Give an introduction to what genetic algorithm is 

 Show what can be done in plain Pharo related to 
genetic algorithm
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These slides…

 … are a support for the TechTalk 

 … are not meant to be understandable when read 
offline 

 … are a summary of a lecture given at the University 
of Chile 

 … incremental in their content
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“The fact that life evolved out of nearly nothing, 
some 10 billion years after the universe evolved 
out of literally nothing, is a fact so staggering that 
I would be mad to attempt words to do it justice.” 

— Richard Dawkins



5

“One general law, leading to the advancement of all 
organic beings, namely, vary, let the strongest live 
and the weakest die” 

— Charles Darwin



Flow - chart of an evolution algorithm
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Flow - chart of an evolution algorithm
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Many EAs are around:  
Ant colony optimization, 
Artificial immune system, 

Cultural algorithms, 
Genetic Algorithm, 

Genetic Programming, 
Grammatical evolution, 

…



Evolution algorithm

 May be written as: 

 x[t + 1] = v( s( x[t] ) )


 where: 

 x[t] is the population at time t under a representation x


 s is the selection operator


 v is a random variation operator
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Evolution algorithm

 Evolutionary algorithms have many advantages, 
including: 

 Offer a framework such that it is comparably easy to incorporate 
prior knowledge about the problem.


 May be combined with other optimization techniques. For 
example, could be used to tuning weights in a neural networks
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Genetic Algorithm in a Nutshell

 Evolutionary computation technique that automatically 
solves problems without specifying the form or structure 
of the solution in advance 

 Generally speaking, genetic algorithms are simulations 
of evolution, using biological genetic operations
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Genetic Algorithm in a Nutshell

 The idea first appears in 1967, in J. D. Bagley’s thesis 
“The Behavior of Adaptive Systems Which Employ 
Genetic and Correlative Algorithms” 

 Since then, this field has witnessed a tremendous 
development 

 Often considered as an optimization method 
 ie. finding x such as f : X -> R is maximal, x belonging to X, a 
multidimensional space


11



Flow - chart of a genetic algorithm
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The algorithm
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Canonical example

 A friend asks you to solve a challenge: 
 He secretly wrote a word of 3 letters, and challenge you to find it


 Your friend can help you that way: 
 He can tell you how many letters are actually correct.
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Canonical example

 You have made 3 words: w1, w2, w3 

 Your friend tells you that 3 letters are different in w1, 2 in 
w2, and 1 in w3.  

 The sequences w2 and w3 are closer to the solution than 
w1 

 You can forget w1 as it is too far from your friend secret 

 You have several options:  

 You can randomly create a new sequence


 You can randomly modify some letters in w2 or w3


 You can combine w2 and w3 in the hope to produce a better sequence
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Step 1 - Initialize Population

 This step is rather easy. It simply consists in creating 
N words of 3 letters 

 N is a parameter of your algorithm.  

 Let’s say N = 10 

 We call a sequence that belongs to our population as 
individual or member
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Step 2 - Evaluate fitness

 The fitness function produce a number score to 
describe the fitness of a given member of the 
population 

 GA is used to evolve a population to an optimal 
solution to a problem, so we need to numerically 
evaluate any given possible solution
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Step 2 - Evaluate fitness

 For example, if the secret sequence is: “cat” 

 We have: 

 f(“cow”) = 1


 f(“cak”) = 2


 f(“cat”) = 3


 Assuming that none of our 10 sequences exactly 
match the secret sequence, we need to create a new 
generation of sequences 

 We therefore have to enter the selection process
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Darwinian Natural Selection

 In order to have a natural selection, we need to have: 

 Heredity: a child receives properties of its parents. In particular, if 
the parents are robust and can live long enough, then the child 
should too


 Variation: some variation may be introduced in children. Children 
should not be identical copy of their parents


 Selection: some members of a population must have the 
opportunity to be parents and have offsprings in order to pass their 
genetic information. Typically referred to as “survival of the fittest”
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Step 3 - Selection 

 Once the fitness is computed for each individual (i.e., 
sequence of our population) we need to select which 
individuals are fit enough to become parent 

 Several strategies are possible: 
 Pick the fittest 25%


 The probability to pick a parent depends on its fitness (e.g., if i1 
has a fitness of 5 and i2 a fitness of 10, then i2 has 2 times more 
probability to be picked)


 This step result in a mating pool, in which parent will 
be picked in the following step
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Step 3 - Selection

A generic selection procedure may be implemented as follows:
1 The fitness function is evaluated for each individual, providing 

fitness values, which are then normalized. Normalization means 
dividing the fitness value of each individual by the sum of all fitness 
values, so that the sum of all resulting fitness values equals 1.

2 The population is sorted by descending fitness values.
3 Accumulated normalized fitness values are computed (the 

accumulated fitness value of an individual is the sum of its own 
fitness value plus the fitness values of all the previous individuals). 
The accumulated fitness of the last individual should be 1 
(otherwise something went wrong in the normalization step).

4 A random number R between 0 and 1 is chosen.
5 The selected individual is the last one whose accumulated 

normalized value is smaller than R.
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Step 4 - Reproduction

 This step builds a new population (with the same size) 

 Individuals composing this new populations are 
“babies” of two parents individuals (from the previous 
population) 

 Each baby is created using two genetic operations: 
cross-over and mutation

22



Step 4 - Reproduction

 Pick two parents from the mating pool 

 Create a new individual, for which its genes is the 
result of mixing the parents’ genes 
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Step 4 - Reproduction

 Pick two parents from the mating pool 

 Create a new individual, for which its genes is the 
result of mixing the parents’ genes 

24 Mixing point randomly picked



Step 4 - Reproduction

 Go over each gene of the child if replace the gene 
using a mutationRate probability 
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Configuring the algorithm

 Mutation rate: % to change a gene when creating a 
child 

 Population size: number of individual to consider each 
time 

 Number of genes: how many genes contains each 
individual 

 Fitness function: Function that tells how good / far an 
individual is from the (ideal) solution
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Result of the algorithm

 Once the algorithm is run, we need to know how 
good we did 

 Two metrics are usually enough: 

 Number of generations until the solution is found


 Total time until the solution is found
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The Fitness Function

 The real hard work of doing some genetic algorithm is 
to write the fitness function 

 The function describes the goal and how well an 
individual 
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Demo

Gofer it 
    smalltalkhubUser: 'abergel' project: 'GeneticAlgo'; 
    configurationOf: 'GeneticAlgo'; 
    loadDevelopment 
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Applications: 
Software Performance
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What is the performance of this car?
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What is the performance of this source code?



Problem description

 A benchmark is a representative execution of a 
software system 

 Essential to measure performance evolution 

 A benchmark requires a workload  

 However, defining such workload is not trivial
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public class CSVImporter {
private ArrayList<ArrayList<Double>> content 

= new ArrayList<>();

private void importFrom(BufferedReader r) 
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename) 
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}
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public class CSVImporter {
private ArrayList<ArrayList<Double>> content 

= new ArrayList<>();

private void importFrom(BufferedReader r) 
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename) 
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

7.398087255376432,3.076587022783508,3.088394050993209
9.982048943630442,4.777197718982212,0.23295837931007068

0.07317507642934801,0.8468390353242117,0.9063179655495648
5.257870939214654,2.126741512737582,1.9651785408915852

Each row line is parsed
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public class CSVImporter {
private ArrayList<ArrayList<Double>> content 

= new ArrayList<>();

private void importFrom(BufferedReader r) 
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename) 
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

7.398087255376432,3.076587022783508,3.088394050993209
9.982048943630442,4.777197718982212,0.23295837931007068

0.07317507642934801,0.8468390353242117,0.9063179655495648
5.257870939214654,2.126741512737582,1.9651785408915852

Measuring the performance of  
this class requires a workload
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//input1.csv 

1.1,3.0

3.2,2.0

public class CSVImporter {
private ArrayList<ArrayList<Double>> content 

= new ArrayList<>();

private void importFrom(BufferedReader r) 
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename) 
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

//input2.csv 

1.123232,3.000001 

3.21231,2.0000001 
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//input1.csv 

1.1,3.0

3.2,2.0

//input2.csv 

1.123232,3.000001 

3.21231,2.0000001 

public class CSVImporter {
private ArrayList<ArrayList<Double>> content 

= new ArrayList<>();

private void importFrom(BufferedReader r) 
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename) 
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

These two files do not take 
the same time to be parsed
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//input1.csv 

1.1,3.0

3.2,2.0

//input2.csv 

1.123232,3.000001 

3.21231,2.0000001 

Around 5 millions numbers  
per second

Around 3 millions numbers  
per second



Case study

 RTUMLClassBuilder is a tool to draw UML class 
diagrams 

 How many classes per seconds can it render?
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SourceCode.java
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Finding the upper bound 
Fitness function = time to render 100 genes 

Gene = 1 class (randomly picked)
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Finding the lower bound 
Fitness function = negated time to render 100 genes 

Gene = 1 class (randomly picked)

503725120
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 RTUMLClassBuilder

We identified the spectrum performance for RTUMLClassBuilder 
In particular, we found: 
   100 classes that maximize the performance 
   100 other classes that minimize the performance 
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Applications: 
Organic living systems 
Unsupervised learning



Making a random car drive a road

 http://boxcar2d.com/about.html
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Join segmented Line creatures

 https://www.youtube.com/watch?v=GOFws_hhZs8 

 https://www.openprocessing.org/sketch/377698
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Unsupervised learning

 “Evolving Neural Networks through Augmenting 
Topologies” 

 by Kenneth O. Stanley and Risto Miikkulainen 


 Identifying weights and bias using Genetic Algorithm 

 Some application 

 https://www.youtube.com/watch?v=BBLJFYr7zB8
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Unsupervised learning

 “Evolving Neural Networks through Augmenting 
Topologies” 

 by Kenneth O. Stanley and Risto Miikkulainen 


 The idea is to find the optimal configuration of the 
network. Topology is variable 
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Unsupervised learning

 “Neural Network Weight Selection Using Genetic 
Algorithms” 

 by David J. Montana 


 “Parameter Tuning of MLP Neural Network Using 
Genetic Algorithms” 

 By Meng Joo Er and Fan Liu* 


 Topology is fixed, and the idea is to find the best 
weights and bias
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