
TechTalk on
Artificial Intelligence

— A practical approach to Genetic Algorithm —

Alexandre Bergel
University of Chile, Object Profile

http://bergel.eu

Goal of today

 Give an introduction to what genetic algorithm is

 Show what can be done in plain Pharo related to
genetic algorithm

2

These slides…

 … are a support for the TechTalk

 … are not meant to be understandable when read
offline

 … are a summary of a lecture given at the University
of Chile

 … incremental in their content

3

“The fact that life evolved out of nearly nothing,
some 10 billion years after the universe evolved
out of literally nothing, is a fact so staggering that
I would be mad to attempt words to do it justice.”

— Richard Dawkins

5

“One general law, leading to the advancement of all
organic beings, namely, vary, let the strongest live
and the weakest die”

— Charles Darwin

Flow - chart of an evolution algorithm

6

SelectionPopulation Parents

Offspring

Reproduction
Replacement

Flow - chart of an evolution algorithm

7

SelectionPopulation Parents

Offspring

Reproduction
Replacement

Many EAs are around:
Ant colony optimization,
Artificial immune system,

Cultural algorithms,
Genetic Algorithm,

Genetic Programming,
Grammatical evolution,

…

Evolution algorithm

 May be written as:

 x[t + 1] = v(s(x[t]))

 where:

 x[t] is the population at time t under a representation x

 s is the selection operator

 v is a random variation operator

8

Evolution algorithm

 Evolutionary algorithms have many advantages,
including:

 Offer a framework such that it is comparably easy to incorporate
prior knowledge about the problem.

 May be combined with other optimization techniques. For
example, could be used to tuning weights in a neural networks

9

Genetic Algorithm in a Nutshell

 Evolutionary computation technique that automatically
solves problems without specifying the form or structure
of the solution in advance

 Generally speaking, genetic algorithms are simulations
of evolution, using biological genetic operations

10

Genetic Algorithm in a Nutshell

 The idea first appears in 1967, in J. D. Bagley’s thesis
“The Behavior of Adaptive Systems Which Employ
Genetic and Correlative Algorithms”

 Since then, this field has witnessed a tremendous
development

 Often considered as an optimization method
 ie. finding x such as f : X -> R is maximal, x belonging to X, a
multidimensional space

11

Flow - chart of a genetic algorithm

12

Yes

Initialize
population

Evaluate fitness

Solution
found? Selection

Reproduction

No

End

The algorithm

13

Canonical example

 A friend asks you to solve a challenge:
 He secretly wrote a word of 3 letters, and challenge you to find it

 Your friend can help you that way:
 He can tell you how many letters are actually correct.

14

Canonical example

 You have made 3 words: w1, w2, w3

 Your friend tells you that 3 letters are different in w1, 2 in
w2, and 1 in w3.

 The sequences w2 and w3 are closer to the solution than
w1

 You can forget w1 as it is too far from your friend secret

 You have several options:

 You can randomly create a new sequence

 You can randomly modify some letters in w2 or w3

 You can combine w2 and w3 in the hope to produce a better sequence

15

Step 1 - Initialize Population

 This step is rather easy. It simply consists in creating
N words of 3 letters

 N is a parameter of your algorithm.

 Let’s say N = 10

 We call a sequence that belongs to our population as
individual or member

16

Step 2 - Evaluate fitness

 The fitness function produce a number score to
describe the fitness of a given member of the
population

 GA is used to evolve a population to an optimal
solution to a problem, so we need to numerically
evaluate any given possible solution

17

Step 2 - Evaluate fitness

 For example, if the secret sequence is: “cat”

 We have:

 f(“cow”) = 1

 f(“cak”) = 2

 f(“cat”) = 3

 Assuming that none of our 10 sequences exactly
match the secret sequence, we need to create a new
generation of sequences

 We therefore have to enter the selection process

18

Darwinian Natural Selection

 In order to have a natural selection, we need to have:

 Heredity: a child receives properties of its parents. In particular, if
the parents are robust and can live long enough, then the child
should too

 Variation: some variation may be introduced in children. Children
should not be identical copy of their parents

 Selection: some members of a population must have the
opportunity to be parents and have offsprings in order to pass their
genetic information. Typically referred to as “survival of the fittest”

19

Step 3 - Selection

 Once the fitness is computed for each individual (i.e.,
sequence of our population) we need to select which
individuals are fit enough to become parent

 Several strategies are possible:
 Pick the fittest 25%

 The probability to pick a parent depends on its fitness (e.g., if i1
has a fitness of 5 and i2 a fitness of 10, then i2 has 2 times more
probability to be picked)

 This step result in a mating pool, in which parent will
be picked in the following step

20

Step 3 - Selection

A generic selection procedure may be implemented as follows:
1 The fitness function is evaluated for each individual, providing

fitness values, which are then normalized. Normalization means
dividing the fitness value of each individual by the sum of all fitness
values, so that the sum of all resulting fitness values equals 1.

2 The population is sorted by descending fitness values.
3 Accumulated normalized fitness values are computed (the

accumulated fitness value of an individual is the sum of its own
fitness value plus the fitness values of all the previous individuals).
The accumulated fitness of the last individual should be 1
(otherwise something went wrong in the normalization step).

4 A random number R between 0 and 1 is chosen.
5 The selected individual is the last one whose accumulated

normalized value is smaller than R.

21

Step 4 - Reproduction

 This step builds a new population (with the same size)

 Individuals composing this new populations are
“babies” of two parents individuals (from the previous
population)

 Each baby is created using two genetic operations:
cross-over and mutation

22

Step 4 - Reproduction

 Pick two parents from the mating pool

 Create a new individual, for which its genes is the
result of mixing the parents’ genes

23

Step 4 - Reproduction

 Pick two parents from the mating pool

 Create a new individual, for which its genes is the
result of mixing the parents’ genes

24 Mixing point randomly picked

Step 4 - Reproduction

 Go over each gene of the child if replace the gene
using a mutationRate probability

25

Configuring the algorithm

 Mutation rate: % to change a gene when creating a
child

 Population size: number of individual to consider each
time

 Number of genes: how many genes contains each
individual

 Fitness function: Function that tells how good / far an
individual is from the (ideal) solution

26

Result of the algorithm

 Once the algorithm is run, we need to know how
good we did

 Two metrics are usually enough:

 Number of generations until the solution is found

 Total time until the solution is found

27

The Fitness Function

 The real hard work of doing some genetic algorithm is
to write the fitness function

 The function describes the goal and how well an
individual

28

Demo

Gofer it
 smalltalkhubUser: 'abergel' project: 'GeneticAlgo';
 configurationOf: 'GeneticAlgo';
 loadDevelopment

29

30

Applications:
Software Performance

31

What is the performance of this car?

32

What is the performance of this source code?

Problem description

 A benchmark is a representative execution of a
software system

 Essential to measure performance evolution

 A benchmark requires a workload

 However, defining such workload is not trivial

33

34

public class CSVImporter {
private ArrayList<ArrayList<Double>> content

= new ArrayList<>();

private void importFrom(BufferedReader r)
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename)
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

35

public class CSVImporter {
private ArrayList<ArrayList<Double>> content

= new ArrayList<>();

private void importFrom(BufferedReader r)
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename)
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

7.398087255376432,3.076587022783508,3.088394050993209
9.982048943630442,4.777197718982212,0.23295837931007068

0.07317507642934801,0.8468390353242117,0.9063179655495648
5.257870939214654,2.126741512737582,1.9651785408915852

Each row line is parsed

36

public class CSVImporter {
private ArrayList<ArrayList<Double>> content

= new ArrayList<>();

private void importFrom(BufferedReader r)
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename)
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

7.398087255376432,3.076587022783508,3.088394050993209
9.982048943630442,4.777197718982212,0.23295837931007068

0.07317507642934801,0.8468390353242117,0.9063179655495648
5.257870939214654,2.126741512737582,1.9651785408915852

Measuring the performance of
this class requires a workload

37

//input1.csv

1.1,3.0

3.2,2.0

public class CSVImporter {
private ArrayList<ArrayList<Double>> content

= new ArrayList<>();

private void importFrom(BufferedReader r)
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename)
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

//input2.csv

1.123232,3.000001

3.21231,2.0000001

38

//input1.csv

1.1,3.0

3.2,2.0

//input2.csv

1.123232,3.000001

3.21231,2.0000001

public class CSVImporter {
private ArrayList<ArrayList<Double>> content

= new ArrayList<>();

private void importFrom(BufferedReader r)
throws IOException {

String row;
while((row = r.readLine()) != null) {

ArrayList<Double> fs = new ArrayList<Double>();
for(String value : row.split(","))

fs.add(Double.parseDouble(value));
content.add(fs);

}
}

public void importFrom(String filename)
throws IOException {

FileReader fr = new FileReader(filename);
this.importFrom(new BufferedReader(fr));

}
}

These two files do not take
the same time to be parsed

39

//input1.csv

1.1,3.0

3.2,2.0

//input2.csv

1.123232,3.000001

3.21231,2.0000001

Around 5 millions numbers
per second

Around 3 millions numbers
per second

Case study

 RTUMLClassBuilder is a tool to draw UML class
diagrams

 How many classes per seconds can it render?

40

SourceCode.java

41

503725120

1600.0

1200.0

800.0

400.0

0.0

Fitness

Generation

Finding the upper bound
Fitness function = time to render 100 genes

Gene = 1 class (randomly picked)

42

Finding the lower bound
Fitness function = negated time to render 100 genes

Gene = 1 class (randomly picked)

503725120

0.0

-10.0

-20.0

-30.0

-40.0

-50.0

Fitness

Generation

43

 RTUMLClassBuilder

We identified the spectrum performance for RTUMLClassBuilder
In particular, we found:
 100 classes that maximize the performance
 100 other classes that minimize the performance

44

Applications:
Organic living systems
Unsupervised learning

Making a random car drive a road

 http://boxcar2d.com/about.html

45

Join segmented Line creatures

 https://www.youtube.com/watch?v=GOFws_hhZs8

 https://www.openprocessing.org/sketch/377698

46

Unsupervised learning

 “Evolving Neural Networks through Augmenting
Topologies”

 by Kenneth O. Stanley and Risto Miikkulainen

 Identifying weights and bias using Genetic Algorithm

 Some application

 https://www.youtube.com/watch?v=BBLJFYr7zB8

47

Unsupervised learning

 “Evolving Neural Networks through Augmenting
Topologies”

 by Kenneth O. Stanley and Risto Miikkulainen

 The idea is to find the optimal configuration of the
network. Topology is variable

48

Unsupervised learning

 “Neural Network Weight Selection Using Genetic
Algorithms”

 by David J. Montana

 “Parameter Tuning of MLP Neural Network Using
Genetic Algorithms”

 By Meng Joo Er and Fan Liu*

 Topology is fixed, and the idea is to find the best
weights and bias

49

