
Building a memory game with

Bloc

Andrei Chiș, Stéphane Ducasse and Aliaksei Syrel

September 16, 2017

master@da7d603*

Copyright 2017 by Andrei Chi, Stéphane Ducasse and Aliaksei Syrel.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 Objectives of this book 1

1.1 Memory game . 1

1.2 Getting started . 2

1.3 Loading the Memory Game . 3

2 Game model insights 5

2.1 Reviewing the card model . 5

2.2 Card simple operations . 6

2.3 Adding notification . 6

2.4 Reviewing the game model . 7

2.5 Grid size and card number . 7

2.6 Initialization . 8

2.7 Game logic . 8

2.8 Ready . 9

3 Building card graphical elements 11

3.1 First: the card element . 11

3.2 Starting to draw a card . 12

3.3 Improving the card visual . 13

3.4 Preparing flipping . 13

3.5 Adding a cross . 14

3.6 Lines and corners reconciled . 15

3.7 Full cross clipped . 15

3.8 Flipped side . 16

4 Adding a board view 21

4.1 The GameElement class . 21

4.2 Creating cards . 22

4.3 Updating the container to its children . 23

4.4 Getting all the children displayed . 23

4.5 Separating cards . 24

5 Adding Interaction 27

5.1 An event listener . 27

i

Contents

5.2 Adding event listeners . 28

5.3 Specialize clickEvent: . 29

5.4 Connecting the model to the UI . 29

5.5 Handling disappear . 30

5.6 Refreshing on missed pair . 31

5.7 Conclusion . 32

ii

Illustrations

1-1 The game after the player selected two cards: faced-down cards are

represented with a cross and turned card with their number. 2

1-2 Another state of the memory game after the player correctly matched

two pairs. 3

3-1 A first extremely basic representation of face down card. 12

3-2 A rounded card. 14

3-3 A rounded card with half of the cross. 15

3-4 Clipping line. 16

3-5 A card with a complete backside. 16

3-6 A card with a complete backside. 17

3-7 Not centered letter. 18

3-8 Not centered letter. 19

4-1 A first board - not really working. 22

4-2 Displaying a row. 23

4-3 Displaying a full board. 24

4-4 Displaying a full board with space. 25

5-1 Debugging the clickEvent: anEvent method. 28

5-2 Tracing registration to the domain notifications. 30

5-3 Selecting two cards that are not in pair. 31

5-4 Selecting two cards that are not a pair. 32

iii

CHA P T E R 1
Objectives of this book

Bloc’s design is getting stable and this book is a first tutorial on Bloc. Some
elements may change such as the name of certain methods, but most of these
changes will be minor.

In this tutorial you will build a memory game. We provide the model and
focus on creating the UI of the game.

1.1 Memory game

Let us have a look at what we want to build with you: a simple Memory game.
In a memory game players need to find pairs of similar cards. In each round
a player turns over two cards at a time. If the two cards show the same sym-
bol they are removed and the player gets a point. If not, they are both flipped.

For example, Figure 1-1 shows the game after the first selection of two cards.
Face-down cards are represented with a cross and turned cards are just show-
ing a number. Figure 1-2 show the same game after a few rounds. While this
game can be played by multiple playes, in this turorial we will build a game
with just one player.

To start with, here is the code that builds and launches the game:

game := MgdGameModel new initializeForSymbols: '12345678'.
grid := MgdGameElement new.
grid memoryGame: game.

space := BlSpace new.
space extent: 420@420.
space root addChild: grid.
space show

1

Objectives of this book

Figure 1-1 The game after the player selected two cards: faced-down cards are

represented with a cross and turned card with their number.

• first, we create a grame model and ask to get the numbers from 1 to 8
associated with the cards. By default a game model has a size of 4 by 4,
which requires eight different cards.

• Second, we create a graphical game element.

• Third, we assign the model of the game to the UI.

• Finally, we create a graphical space in which we place the game UI and
we display the space.

1.2 Getting started

This tutorial is for Pharo 60 running on the latest Pharo60 Virtual machine.
You can get them at the following address

http://get.pharo.org/60+vm

Alternatively, you can download them by executing the line below on a Linux
or MacOs system:

wget -O- get.pharo.org/60+vm | bash

To load Bloc execute the following snippet:

Metacello new
baseline: 'Bloc';

2

1.3 Loading the Memory Game

Figure 1-2 Another state of the memory game after the player correctly matched

two pairs.

repository: 'github://pharo-graphics/Bloc/src';
load: #core.

1.3 Loading the Memory Game

To make the demo easier to follow and help you if you get lost we already
made a full implementation of the game. You can load it using the following
code:

Metacello new
baseline: 'BlocTutorials';
repository: 'github://pharo-graphics/Tutorials/src';
load

After you loaded the BlocTutorials project, you will get two new packages:
Bloc-MemoryGame and Bloc-MemoryGame-Demo. Bloc-MemoryGame contains
the full implementation of the game. Just to the class side of MgExamples and
click on the gree triangle next to the openmethod to start the game. Bloc-
MemoryGame-Demo is a skeleton for the game that we will use in this tutorial.

3

CHA P T E R2
Game model insights

Before starting with the actual graphical elements, we first need a model for
our game. This game model will be used as a model in the typical Model View
architecture. One the one hand, the model does not communicate directly
with the graphical elements; all communication is done via announcements.
On the other hand, the graphic elements are communicating directly with
the model.

In the remainder of this chapter we describe the game model in details. If
you want to move directly to building graphical elements using Bloc, the
package Bloc-MemoryGame-Demo already contains the model.

2.1 Reviewing the card model

Let us start with the card model: a card is an object holding a symbol to be
displayed, a state representing whether it is flipped or not, and an announcer
to emit state changes. This object could also be a subclass of Model which
already provide announcer management.

Object subclass: #MgdCardModel
instanceVariableNames: 'symbol flipped announcer'
classVariableNames: ''
package: 'Bloc-MemoryGame-Demo-Model'

After creating the class we add an initializemethod to set the card as not
flipped, together with several accessors:

MgdCardModel >> initialize
super initialize.
flipped := false

5

Game model insights

MgdCardModel >> symbol: aCharacter
symbol := aCharacter

MgdCardModel >> symbol
^ symbol

MgdCardModel >> isFlipped
^ flipped

MgdCardModel >> announcer
^ announcer ifNil: [announcer := Announcer new]

2.2 Card simple operations

Next we need two API methods to flip a card and make it disappear when it is
no longer needed in the game.

MgdCardModel >> flip
flipped := flipped not.
self notifyFlipped

MgdCardModel >> disappear
self notifyDisappear

2.3 Adding notification

The notification is implemented as follows in the notifyFlipped and no-
tifyDisappearmethods. They simply announce events of type MgdCard-
FlippedAnnouncement and MgdCardDisappearAnnouncement. The graphi-
cal elements will have to register subscriptions for these announcements as
we will see later.

MgdCardModel >> notifyFlipped
self announcer announce: MgdCardFlippedAnnouncement new

MgdCardModel >> notifyDisappear
"Notify all observers that I disappeared from the game"
self announcer announce: MgCardDisappearAnnouncement new

Here, MgdCardFlippedAnnouncement and MgCardDisappearAnnouncement
are just subclasses of Announcement.

Announcement subclass: #MgdCardFlippedAnnouncement
instanceVariableNames: ''
classVariableNames: ''
package: 'Bloc-MemoryGame-Demo-Events'

Announcement subclass: #MgdCardDisappearAnnouncement
instanceVariableNames: ''
classVariableNames: ''
package: 'Bloc-MemoryGame-Demo-Events'

6

2.4 Reviewing the game model

We add one final method to print a card in a nicer way and we are done with
the card model!

MgdCardModel >> printOn: aStream
aStream
nextPutAll: 'Card';
nextPut: Character space;
nextPut: $(;
nextPut: self symbol;
nextPut: $)

2.4 Reviewing the game model

The game model is simple: it keeps the tracks of all the available cards and
all the cards currently selected by the player.

Object subclass: #MgdGameModel
instanceVariableNames: 'availableCards chosenCards'
classVariableNames: ''
package: 'Bloc-MemoryGame-Demo-Model'

The initializemethod set two collections for the different cards.

MgdGameModel >> initialize
super initialize.
availableCards := OrderedCollection new.
chosenCards := OrderedCollection new

MgdGameModel >> availableCards
^ availableCards

MgdGameModel >> chosenCards
^ chosenCards

2.5 Grid size and card number

We hardcode for now the size of the grid and of the number of cards that
need to be matched by a player.

MgdGameModel >> gridSize
"Return grid size, total amount of card is gridSize^2"
^ 4

MgdGameModel >> matchesCount
"How many choosen cards should match in order for them to

disappear"
^ 2

MgdGameModel >> cardsCount
"Return how many cards there should be depending on grid size"
^ self gridSize * self gridSize

7

Game model insights

2.6 Initialization

To initialize the game with cards we add a dedicated method, initialize-
ForSymbols:. This method creates a list of cards from a list of characters
and shuffle it. We also add an assertion in this method to verify that the
called provided enough characters.

MgdGameModel >> initializeForSymbols: characters

self
assert: [characters size = (self cardsCount / self
matchesCount)]
description: ['Amount of characters must be equal to possible
all combinations'].

availableCards := (characters asArray collect: [:aSymbol |
(1 to: self matchesCount) collect: [:i |

MgdCardModel new symbol: aSymbol]])
flattened shuffled asOrderedCollection

2.7 Game logic

Next we need chooseCard:, a method that will be called when a user selects
a card. This method is actually the most complex method of the model and
implements the main logic of the game. First, the method makes sure that
the seleted card is not already selected. This could happen if the view uses
animations that give players the chance to click on the card more then once.
Next, the card is flipped by sending it the message flip. Finally, depending
on the actual state of the game the step is complete and the selected cards
removed, or all selected cards are flipped back.

MgdGameModel >> chooseCard: aCard
(self chosenCards includes: aCard)
ifTrue: [^ self].

self chosenCards add: aCard.
aCard flip.
self shouldCompleteStep ifTrue: [
^ self completeStep].

self shouldResetStep ifTrue: [
self resetStep]

The current step is completed if the player selected the right amount of
cards and they all show the same symbol. In this case, all selected cards
receive the message disappear and are removed from the list of selected
cards.

MgdGameModel >> shouldCompleteStep
^ self chosenCards size = self matchesCount
and: [self chosenCardMatch]

8

2.8 Ready

MgdGameModel >> chosenCardMatch
| firstCard |
firstCard := self chosenCards first.
^ self chosenCards allSatisfy: [:aCard |
aCard isFlipped and: [firstCard symbol = aCard symbol]]

MgdGameModel >> completeStep
self chosenCards
do: [:aCard | aCard disappear];
removeAll.

The current step should be reset if the player selected a third card. This will
happen when a player already selected two cards that did not match and
clicked on a third one. In this situation the two initialcards will be flipped
back. The list of selecte cards will only contain the third card.

MgdGameModel >> shouldResetStep
^ self chosenCards size > self matchesCount

MgdGameModel >> resetStep
|lastCard|
lastCard := self chosenCards last.
self chosenCards
allButLastDo: [:aCard | aCard flip];
removeAll;
add: lastCard

2.8 Ready

We are now ready to start building the game view.

Since Bloc is still under development, it may happen that you will get excep-
tions after which graphical elements do not render correctly. In that case the
Universe has to be reinitialized.

BlUniverse reset

9

CHA P T E R3
Building card graphical elements

In this chapter we will build step by step the visual appearance of the cards.
In Bloc visual objects are called elements and usually you define a subclass of
BlElement, the inheritance tree root. In subsequent chapters we will do the
same for the game and add interaction using event listeners.

3.1 First: the card element

A graphic element is a subclass of the BlElement. It simply has a reference
to a card model.

BlElement subclass: #MgdCardElement
instanceVariableNames: 'card'
classVariableNames: ''
package: 'Bloc-MemoryGame-Tutorial'

The message backgroundColor is one of the customisation hooks defined in
BlElement. Let us define a nice color.

MgdCardElement >> backgroundColor
^ Color lightBlue

We mentioned the accessors since the setter will be place to hook registra-
tion for the communication between the model and the view.

MgdCardElement >> card
^ card

MgdCardElement >> card: aMgCard
card := aMgCard

We initialize it to get a

11

Building card graphical elements

Figure 3-1 A first extremely basic representation of face down card.

MgdCardElement >> initialize
super initialize.
self size: 80 @ 80.
self card: MgdCardModel new

3.2 Starting to draw a card

To define the visual properties of a graphic element we redefine the method
drawPathOnSpartaCanvas:.

(This method will be renamed drawPathOn: in the future).

MgdCardElement >> drawPathOnSpartaCanvas: aCanvas

super drawPathOnSpartaCanvas: aCanvas.
aCanvas fill
paint: self backgroundColor;
path: self boundsInLocal;
draw

Note that if we forget to send the message draw the canvas will be set but it
will not display the result.

Now to see the result in Morphic we have to get a spartaForm as follows:

MgdRawCardElement new asSpartaForm

You can also use the the inspector as shown in Figure 3-1. Here we create
and inspect the graphic element and then we ask for its form and look at it in
the Morph pane (this is what the Preview pane is actually doing).

12

3.3 Improving the card visual

3.3 Improving the card visual

Instead of displaying a full rectangle, we want a better visual. Bloc offers a
shape factory. This shape factory returns shape path (lines, rectangle, el-
lipse, circle...) that can be passed to the canvas using the message path:.
Other shapes can be easily added.

For example with the following expression path: (aCanvas shape el-
lipse: self boundsInLocal) we draw now a circle since the bounds of the
receiver returns a square of 80.

MgdCardElement >> drawPathOnSpartaCanvas: aCanvas

| radius |
super drawPathOnSpartaCanvas: aCanvas.
radius := 12.
aCanvas fill
paint: self backgroundColor;
path: (aCanvas shape ellipse: self boundsInLocal);
draw

For our card we would like to have a rounded rectangle so we use the round-
edRectangle:radii: factory message.

MgdCardElement >> drawPathOnSpartaCanvas: aCanvas

| radius |
super drawPathOnSpartaCanvas: aCanvas.
radius := 12.
aCanvas fill
paint: self backgroundColor;
path: (aCanvas shape roundedRectangle: (self boundsInLocal)
radii: (BlCornerRadii radius: 12));
draw

You should get then a visual representation close to the one shown in Figure
3-2.

3.4 Preparing flipping

We define now two methods

MgdCardElement >> drawBacksideOn: aCanvas
"nothing for now"

MgdCardElement >> drawFlippedOnCanvas: aCanvas
"nothing for now"

And we refactor drawPathOnSpartaCanvas: as follows: we extract the com-
mon part into a separate method.

13

Building card graphical elements

Figure 3-2 A rounded card.

MgdCardElement >> drawCommonOnCanvas: aCanvas
| radius |
super drawPathOnSpartaCanvas: aCanvas.
radius := 12.
aCanvas fill
paint: self backgroundColor;
path: (aCanvas shape roundedRectangle: self boundsInLocal radii:
(BlCornerRadii radius: 12));
draw.

Finally, drawPathOnSpartaCanvas: logic is at the same conceptual level.

MgdCardElement >> drawPathOnSpartaCanvas: aCanvas
super drawPathOnSpartaCanvas: aCanvas.
self drawCommonOnCanvas: aCanvas.
self card flipped
ifTrue: [self drawFlippedOnCanvas: aCanvas]
ifFalse: [self drawBacksideOn: aCanvas]

Now we are ready to implement the backside and flipped side

3.5 Adding a cross

Now we are ready to define the backside of our card. We will start by draw-
ing a line. To draw a line we should provide it as a path. In Bloc this can be
done by either passing a Path object or by asking the canvas for its shape fac-
tory. The shape factory encapsulates the logic of shapes. This is what we do
below with the expression path: (aCanvas shape line: 0 @ 0 to: self
extent). The message shape returns a ShapeFactory and we ask this factory
to produce a path to produce a line.

MgdCardElement >> drawBacksideOn: aCanvas
aCanvas stroke
paint: Color paleBlue;
path: (aCanvas shape line: 0 @ 0 to: self extent);

14

3.6 Lines and corners reconciled

Figure 3-3 A rounded card with half of the cross.

draw

Once this method is defined, refresh the inspector and you should get a card
as in Figure 3-3.

3.6 Lines and corners reconciled

In Figure 3-3 we see that the line is not clipped to the corners. We should
address this. This is the way we did it for now.

MgdCardElement >> drawBacksideOn: aCanvas
| radiusOffset |
radiusOffset := 12 / Float pi.
aCanvas stroke
paint: Color gray;
width: 3;
path: (aCanvas shape

line: radiusOffset @ radiusOffset
to: self extent - radiusOffset);

draw

Once you change the method drawBacksideOn: and refresh you should get a
card as displayed in Figure 3-4.

3.7 Full cross clipped

Now we can add the line to build a full cross. Our solution is defined as fol-
lows:

MgdCardElement >> drawBacksideOn: aCanvas
| radiusOffset |
radiusOffset := 12 / Float pi.
aCanvas stroke
paint: Color paleBlue;
width: 3;

15

Building card graphical elements

Figure 3-4 Clipping line.

Figure 3-5 A card with a complete backside.

path: (aCanvas shape
line: radiusOffset @ radiusOffset
to: self extent - radiusOffset);

draw.
aCanvas stroke
paint: Color paleBlue;
width: 3;
path: (aCanvas shape

line: (self width - radiusOffset) @ radiusOffset
to: radiusOffset @ (self height - radiusOffset));

draw

Now our backside is fully implemented and when you refresh your view, you
should get the card as shown in Figure 3-5.

3.8 Flipped side

Now we are ready to develop the flipped side of the card. To see if we should
change the card model. You can use the inspector to get the cardElement
and send it the message card flip or directly recreate a new card as fol-
lows:

16

3.8 Flipped side

Figure 3-6 A card with a complete backside.

| cardEl |
cardEl := MgdCardElement2 new.
cardEl card flip.
cardEl asSpartaForm

You should get an inspector in the situation shown in Figure 3-6. Now we are
ready to implement the flipped side.

Let us redefine drawFlippedOnCanvas: as follows:

• First we ask the canvas to build a font of size 50. Note that for the font
we specify a FreeType font (pay attention that strike fonts do not work
and will never work in Bloc - in fact they will be removed once Pharo is
based on Bloc).

• Then we ask the canvas to draw a text using the font with the color we
want.

We should not forget to send the message draw to the canvas.

MgdCardElement >> drawFlippedOnCanvas: aCanvas
| font |
font := aCanvas font
named: 'Source Sans Pro';
size: 50;
build.

aCanvas text
font: font;
paint: Color gray;
string: self card symbol asString;
draw

When we refresh the display we do not see the symbol and this is a problem.
If you pay attention you will see that there is just one line that is drawn on
the top left of the card. You can change the color to red to see it on the card.
We are drawing the string in the corner and outside the rounded rectangle.
Let us fix that issue by defining the baseline from which the text should be
displayed.

17

Building card graphical elements

Figure 3-7 Not centered letter.

MgdCardElement >> drawFlippedOnCanvas: aCanvas
| font origin |
font := aCanvas font
named: 'Source Sans Pro';
size: 50;
build.

origin := self extent / 2.
aCanvas text
baseline: origin;
font: font;
paint: Color paleBlue;
string: self card symbol asString;
draw

When you refresh the inspector you should see the card symbol but not cen-
tered as shown in Figure 3-7.

To center the text well, we have to use exact font metrics. Bloc can support
multiple graphical back-end such as Cairo, Moz2D and in the future plain
openGL. There is one important constraint, that is that font metrics should
be measured and manipulated via the same back-end abstraction. For this
purpose, the expression aCanvas text returns a text painter and such a text
painter provides access to the font measurements. Using such measurements
we can then get access to the text metrics and compute a better center.

MgdCardElement >> drawFlippedOnCanvas: aCanvas
| font origin textPainter metrics |
font := aCanvas font
named: 'Source Sans Pro';
size: 50;
build.

textPainter := aCanvas text
font: font;
paint: Color paleBlue;
string: self card symbol asString.

18

3.8 Flipped side

Figure 3-8 Not centered letter.

metrics := textPainter measure.

origin := (self extent - metrics textMetrics bounds extent) / 2.
textPainter
baseline: origin;
draw

With this definition we get the letter centered vertically but not horizontally.
This is because we have to take into account the font size.

MgdCardElement >> drawFlippedOnCanvas: aCanvas
| font origin textPainter metrics |
font := aCanvas font
named: 'Source Sans Pro';
size: 50;
build.

textPainter := aCanvas text
font: font;
paint: Color paleBlue;
string: self card symbol asString.

metrics := textPainter measure.

origin := (self extent - metrics textMetrics bounds extent) / 2.
origin := origin - metrics textMetrics bounds origin.
textPainter
baseline: origin;
draw

With this definition we get a centered letter as shown in Figure 3-8.

Now we are ready to work on the board game.

19

CHA P T E R4
Adding a board view

In the previous chapter, we defined all the card visualization. We are now
ready to define the game board visualization. Basically we will define a new
element subclass and set its layout

Here is a typical scenario to create the game: we create a model and its view
and we assign the model as the view’s model.

game := MgdGameModel numbers.
grid := MgdGameElement2 new.
grid memoryGame: game.

4.1 The GameElement class

Let us define the class MgdGameElement that will represent the game board.
As for the CardElement, it inherits from the BlElement class. This view ob-
ject holds a reference to the game model.

BlElement subclass: #MgdGameElement
instanceVariableNames: 'memoryGame'
classVariableNames: ''
package: 'Bloc-MemoryGame-Tutorial'

We define the memoryGame: setter method. We will extend it just after to
create all the cards element.

MgdGameElement >> memoryGame: aMgdGameModel
memoryGame := aMgdGameModel

MgdGameElement >> memoryGame
^ memoryGame

21

Adding a board view

Figure 4-1 A first board - not really working.

During the object initialization we set the layout (i.e., how sub elements are
placed inside their container). Here we define the layout to be a grid layout
and we set it as horizontal.

MgGameElement >> initialize
super initialize.
self layout: BlGridLayout horizontal.

4.2 Creating cards

When a model is set for a board game, we use the model information to per-
form the following actions:

• we set the number of columns of the layout

• we create all the card elements paying attention to set their respective
model.

Note in particular that we add all the cards graphical elements as children of
the board game using the message addChild:.

MgdGameElement >> memoryGame: aGameModel
memoryGame := aGameModel.

memoryGame availableCards
do: [:aCard | self addChild: (self newCardElement card: aCard)]

MgdGameElement >> newCardElement
^ MgdCardElement new

When we refresh the inspector we obtain a situation similar to the one of
Figure 4-1. It shows that only a small part of the game is displayed. This is
due to the fact that the game element did not adapt to its children.

22

4.3 Updating the container to its children

Figure 4-2 Displaying a row.

4.3 Updating the container to its children

A layout is responsible for the layout of the children of a container but not of
the container itself. For this, we should use constraints.

MgdGameElement >> initialize
super initialize.
self layout: BlGridLayout horizontal.
self
constraintsDo: [:layoutCons |

layoutCons horizontal fitContent.
layoutCons vertical fitContent]

Now when we refresh our view we should get a situation close to the one pre-
sented in Figure4-2, i.e., having just one row. Indeed we never mentioned to
the layout that it should layout its children in to a grid, wrapping after four.

4.4 Getting all the children displayed

We modify the memoryGame: method to set the number of columns that the
layout should handle.

MgdGameElement >> memoryGame: aGameModel
memoryGame := aGameModel.
self layout columnCount: memoryGame gridSize.
memoryGame availableCards
do: [:aCard | self addChild: (self newCardElement card: aCard)]

Once the layout is set with the correct information we obtain a full board as
shown in Figure 5-1.

23

Adding a board view

Figure 4-3 Displaying a full board.

4.5 Separating cards

To offer a better identification of the cards, we should add some space be-
tween each of them. We achieve this by using the message cellSpacing: as
shown below.

We take the opportunity to change the background color using the message
background:. Note that a background is not necessarily a color but that
color is polymorphic to a background therefore the expression background:
Color gray is equivalent to background: (BlBackground fill: Color
gray).

MgdGameElement >> initialize
super initialize.
self layout: BlGridLayout horizontal.
self layout cellSpacing: 7.
self background: (BlBackground fill: Color gray).
self
constraintsDo: [:layoutCons |

layoutCons horizontal fitContent.
layoutCons vertical fitContent]

Once this method is changed, you should get a situation similar to the one
described by Figure 4-4.

We are now ready for adding interaction to the game.

24

Figure 4-4 Displaying a full board with space.

CHA P T E R5
Adding Interaction

Now we will add interaction to the game. We want to flip the cards by click-
ing on them. Bloc supports such situations using two mechanisms: on one
hand, event listeners handle events and on the other hand, the communi-
cation between the model and view is managed via the registration to an-
nouncements sent by the model.

5.1 An event listener

BlElementEventListener subclass: #MgdCardEventListener
instanceVariableNames: 'memoryGame'
classVariableNames: ''
package: 'Bloc-MemoryGame-Tutorial'

We add an instance variable memoryGame holding a game model to the lis-
tener because we will need to access the model to react to events for example
to update the game situation.

MgdCardEventListener >> memoryGame: aGameModel
memoryGame := aGameModel

Let us redefine the click: method to raise a debugger. It will give us the
occasion to introspect the system.

MgdCardEventListener >> clickEvent: anEvent
self halt

27

Adding Interaction

Figure 5-1 Debugging the clickEvent: anEvent method.

5.2 Adding event listeners

Now we should add the game event listener to each card because we want
to know which card will be clicked and pass this information to the game
model.

MgdGameElement >> newCardEventListener
^ MgdCardEventListener new

MgdGameElement >> memoryGame: aGameModel
memoryGame := aGameModel.
self layout columnCount: memoryGame gridSize.
memoryGame availableCards
do: [:aCard |

| cardElement |
cardElement := self newCardElement card: aCard.
cardElement addEventHandler: (self newCardEventListener

memoryGame: aGameModel).
self addChild: cardElement]

Now the preview is not enough and we should create a window and embed-
ded the game element. Then when you click on an card you should get a de-
bugger as shown in Figure 5-1.

28

5.3 Specialize clickEvent:

| space grid game |
space := BlSpace new.
space extent: 420@420.
game := MgdGameModel numbers.
grid := MgdGameElement2 new.
grid memoryGame: game.
space root addChild: grid.
space show

5.3 Specialize clickEvent:

Now we can specialise the clickEvent: method as follows:

• we get the graphical element that receives the mouse click using the
message currentTarget. The message currentTarget returns the
element that receives an event.

• From this graphical card we access the card model and we pass this
card model to the game model.

MgdCardEventListener >> clickEvent: anEvent
memoryGame chooseCard: anEvent currentTarget card

It means that the memory game model is changed but we do not see the vi-
sual effect of our actions. Indeed this is normal. We never made sure that
visual elements are listening to model changes. This is what we will do in the
following chapter.

5.4 Connecting the model to the UI

Now we show how the domain communicates with the user interface: the
domain emits notifications using announcements but it does not refer to the
UI elements. It is the visual elements that should register to the notifications
and react accordingly.

Let us first define two simple methods in the class CardElement just produc-
ing a trace.

MgdCardElement >> onDisappear
Transcript show: 'On disappear'; cr

MgdCardElement >> onFlipped
Transcript show: 'On flipped'; cr

Now we can modify the setter so that when a card model is set to a card
graphical element, we register to the notifications emitted by the model.
In the following method, we make sure that on notifications we invoke the
trace methods just defined.

29

Adding Interaction

Figure 5-2 Tracing registration to the domain notifications.

MgdCardElement >> card: aMgCard
card := aMgCard.
card announcer when: MgdCardFlippedAnnouncement send: #onFlipped

to: self.
card announcer when: MgdCardDisappearAnnouncement send:

#onDisappear to: self

Now when you click on a card, you can see the trace in the Transcript but
you do not see the changes. This is because we should notify the graphics
engine that one element should be redrawn.

MgdCardElement >> onFlipped
Transcript show: 'On flipped'; cr.
self invalidate

5.5 Handling disappear

There are two ways to implement the disappear of a card, either setting the
opacity of the element to 0.

MgdCardElement >> onDisappear
Transcript show: 'On disappear'; cr.
self opacity: 0.
self invalidate

Note that the element is still present and receive events.

Or changing the visibility as follows:

MgdCardElement >> onDisappear
Transcript show: 'On disappear'; cr.
self visibility: BlVisibility hidden.
self invalidate. "not needed in the latest Bloc"

30

5.6 Refreshing on missed pair

Figure 5-3 Selecting two cards that are not in pair.

Note that in the last case the element does not get events. It is used for lay-
out.

5.6 Refreshing on missed pair

When the player selects two cards that are not a pair, we present the two
cards as shown in Figure 5-4. Now the clicking on another card will flip back
the previous cards.

Remember a card when flipped in either sense will raise a notification.

MgdCardElement >> flipped: aBoolean
flipped := aBoolean.
self notifyFlipped

In the method choseCard: we see that all the previous cards are flip (tog-
gled).

...
(self chosenCards size > self matchesCount)

ifTrue: [
self chosenCards allButLastDo: [:each | each flip].
self chosenCards removeAll.
self chosenCards add: aMgCard]

...

31

Adding Interaction

Figure 5-4 Selecting two cards that are not a pair.

5.7 Conclusion

At this stage you are done for the simple interaction. Future versions of this
document will explain how to add animations.

32

	Illustrations
	Objectives of this book
	Memory game
	Getting started
	Loading the Memory Game

	Game model insights
	Reviewing the card model
	Card simple operations
	Adding notification
	Reviewing the game model
	Grid size and card number
	Initialization
	Game logic
	Ready

	Building card graphical elements
	First: the card element
	Starting to draw a card
	Improving the card visual
	Preparing flipping
	Adding a cross
	Lines and corners reconciled
	Full cross clipped
	Flipped side

	Adding a board view
	The GameElement class
	Creating cards
	Updating the container to its children
	Getting all the children displayed
	Separating cards

	Adding Interaction
	An event listener
	Adding event listeners
	Specialize clickEvent:
	Connecting the model to the UI
	Handling disappear
	Refreshing on missed pair
	Conclusion

