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Illustrations

This book explains the design and the consequence of having a self-described reflective minimal
kernel such as ObjVlisp.

Doing so we will learn about objects, object creation instantiation, message lookup, delegation,
inheritance and much more.
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CHA P T E R 1
A class-based reflective minimal kernel

”The difference between classes and objects has been repeatedly emphasized. In the view presented here,
these concepts belong to different worlds: the program text only contains classes; at run-time, only objects
exist. This is not the only approach. One of the subcultures of object-oriented programming, influenced by
Lisp and exemplified by Smalltalk, views classes as object themselves, which still have an existence at run-
time.” B. Meyer Object-Oriented Software Construction

As this quote expresses it, there is a realm where classes are true objects, instances of other classes.
In such systems such as Smalltalk, Pharo, CLOS, classes are described by other classes and form of-
ten reflective architectures each one describing the previous level. In this chapter we will explore
a minimal reflective class-based kernel, inspired from ObjVlisp [Coi87]. In the following chapter
you will implement step by step such a kernel in less than 30 methods.

1.1 ObjVlisp

ObjVlisp was published the first time in 1986 when the foundation of object-oriented programming
was still emerging [Coi87]. ObjVlisp has explicit metaclasses and supports metaclass reuse. It was
inspired from the kernel of Smalltalk-78. The IBM SOM-DSOM kernel is similar to ObjVLisp while
implemented in C++ [DF94]. ObjVlisp is a subset of the reflective kernel of CLOS since CLOS reifies
instance variables, generic functions, and method combination [Ste90][KdRB91]. In comparison
to ObjVlisp, Smalltalk [Gol84]or Pharo [BDN+09]have implicit metaclasses and no metaclass reuse
except by basic inheritance but it is more stable as explained by Bouraqadi et al [Gra89][BLR98].

Studying this kernel is really worth since it has the following properties:

• It unifies class and instances (there is only one data structure to represent all objects, classes
included),

• It is composed of only two classes Class and Object (It relies on existing elements such as
booleans, arrays, string of the underlying implementation language),

• It raises the question of meta-circularity infinite regression (a class is instance of another
class that is an instance of yet another class ...) and how to resolve it,

• It forces to revisit allocation, class and object initialization, message passing as well as boot-
strap,

• It can be implemented in less than 30 methods in Pharo.

Just remember that this kernel is self-described so we will start to explain some aspects and since
everything is linked you may have to read the chapter twice to fully get it.
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A class-based reflective minimal kernel

class
error
initialize

Object
new
allocate
initialize

Class

Figure 1-1 The ObjVlisp kernel: a minimal class-based kernel.

1.2 ObjVLisp’s six postulates

The original ObjVlisp kernel is defined by six postulates [Coi87]. Some of them look a bit dated by
today standards and the 6th postulate is simply wrong as we will explain later (A solution is simple
to design and implement).

Here we report them as stated in the paper for sake of historical perspective.

1. An object represents a piece of knowledge and a set of capabilities.

2. The only protocol to activate an object is message passing: a message specifies which proce-
dure to apply (denoted by its name, the selector) and its arguments.

3. Every object belongs to a class that specifies its data (attributes called fields) and its behavior
(procedures called methods). Objects will be dynamically generated from this model, they
are called instances of the class. Following Plato, all instances of a class have same structure
and shape, but differ through the values of their common instance variables.

4. A class is also an object, instantiated by another class, called its metaclass. Consequently
(P3), to each class is associated a metaclass which describes its behavior as an object. The
initial primitive metaclass is the class Class, built as its own instance.

5. A class can be defined as a subclass of one (or many) other class(es). This subclassing mech-
anism allows sharing of instance variables and methods, and is called inheritance. The class
Object represents the most common behavior shared by all objects.

6. If the instance variables owned by an object define a local environment, there are also class
variables defining a global environment shared by all the instances of a same class. These
class variables are defined at the metaclass level according to the following equation: class
variable [an-object] = instance variable [an-object’s class].

1.3 Kernel overview

If you do not fully grasp the following overview, do not get worry, this full chapter is here to make
sure that you will understand it. Let us get started.

Contrary to a real uniform language kernel, ObjVlisp does not consider arrays, booleans, strings,
numbers or any other elementary objects as part of the kernel as this is the case in a real bootstrap
such as the one of Pharo. ObjVLisp’s kernel focuses on understanding Class/Object core relation-
ships.

Figure 1-1 shows the two core classes of the kernel:

• Object which is the root of the inheritance graph and is instance of Class.

• Class is the first class and root of the instantiation tree and instance of itself as we will see
later.

Figure 1-2 shows that the class Workstation is an instance of the class Class since it is a class and
it inherits from Object the default behavior objects should exhibit. The class WithSingleton is
an instance of the class Class but in addition it inherits from Class since this is a metaclass: its
instances are classes. As such, it changes the behavior of classes. The class SpecialWorkstation
is an instance of the class WithSingleton and inherits from Workstation since its instances ex-
hibits the same behavior as Workstation.
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1.3 Kernel overview

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Class

Figure 1-2 The kernel with specialized metaclasses.

new

new

new
    uniqueInstance isNil
        ifTrue: [uniqueInstance := super new].
    ^ uniqueInstance

originate: aPacket
accept: aPacket

Workstation

aWorkstation (BigMac)

instance of

new
WithSingleton

SpecialWorkstation

Minna

class
error
initialize

Object
new
allocate
initialize

Class

Figure 1-3 Understanding metaclasses using message passing.

The two diagrams 1-1 and 1-2 will be explained step by step during all this chapter.

Note The key point to understand such a reflective architecture is that message passing al-
ways looks up methods in the class of the receiver of the message and then follows the inheri-
tance chain (See Figure 1-3).

Figure 1-3 illustrates two main cases:

• When we send a message to BigMac or Minna, the corresponding method is looked up in
their corresponding classes Workstation or SpecialWorkstation and follows the inheri-
tance link up to Object.

• When we send a messsage to the classes Workstation or SpecialWorkstation, the corre-
sponding method is looked up in their class, the class Class up to Object.
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A class-based reflective minimal kernel

'mac1'
mac2

| mac1 mac2 |
mac1 := Workstation new 
                     name: #mac2 nextNode: nil.
mac1 := Workstation new 
                     name: #mac1 nextNode: mac2

new

superclass
methodDict
...

Class

P1 & P3

P4

an instance of Workstation

The class Workstation

The class Point
instance of 

instance of 

10
20

send: aPacket
accept: aPacket

name 
nextNode

Workstation

10@20

instance of 

instance of 
distFrom:

x
y

Point

The class Class

Point new setX: 10 setY: 20

Figure 1-4 Chain of instantiation: classes are objects too.

1.4 Instances

In this kernel, there is only one instantiation link, it is applied at all the levels as shown by Figure
1-4:

• Terminal instances are obviously objects: a workstation named mac1 is an instance of the
class Workstation, a point 10@20 is instance of the class Point.

• Classes are also objects instances of other classes: the class Workstation is an instance of
the class Class, the class Point is an instance of the class Class.

In our diagrams, we represent objects (mainly terminal instances) as round corner rectangles with
the list of instance variable values. Since classes are objects, when we want to stress that classes are
objects we use the same graphical convention as shown in Figure 1-7.

Handling infinite recursion

A class is an object therefore instance of another class its metaclass that is an object too instance
of a metametaclass that is an object too instance of another a metametametaclass...... To stop this
potential infinite recursion, ObjVlisp uses similar to solutions proposed in many meta circular sys-
tems: one instance is instance of itself.

In ObjVLisp:

• Class is the initial class and metaclass,

• Class is instance of itself and directly or undirectly all other metaclasses are instances of
Class.

We will see later the implication of this self instantiation at the level of the class structure itself.

1.5 Understanding metaclasses

The model unifies classes and instances. When we follow the instance related postulates of the
kernel we get:

• Every object is instance of a class,
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1.6 Instance structure

Instances
Classes:

respond to new: 
and create instances

Metaclasses:
classes whose 

instances 
are classes

Figure 1-5 Everything is an object. Classes are just objects which can create other objects and meta-

classes are just classes whose instances are classes.

Figure 1-6 Instances of Workstation have two values: their names and their next node.

• A class is an object instance of a metaclass, and

• A metaclass is only a class that generates classes.

At the implementation level there is only one kind of entity: objects. There is no special treatment
for classes. Classes are instantiated following the same process than terminal instances. There are
sent messages the same way other objects are sent messages too.

This unification between instances and classes does not mean that we do not distinguish objects
and classes. Indeed not all the objects are classes. In particular, the sole difference between a class
and an instance is the ability to respond to the creation message: new. Only a class knows how to
respond to it. Then metaclasses are just classes whose instances are classes as shown in Figure 1-5.

1.6 Instance structure

The model does not really bring anything new about instance structure when compared with lan-
guages such as Pharo or Java.

Instance variables are an ordered sequence of instance variables defined by a class. Such instance
variables are shared by all instances. The values of such instance variables are specific to each in-
stance. Figure 1-6 shows that instances of Workstation have two values: a name and a next node.

In addition we should note that an object has a pointer to its class. As we will see when we will
come to inheritance, every object possesses an instance variable class (inherited from Object) that
points to its class.
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A class-based reflective minimal kernel

The class Point

Class
'Point'
Object

'x y'
methods...

is instance of Class
named Point
inherits from Object
has instance variables
defines some methods

Figure 1-7 Point class as an object.

Note that this management of class instance variable defined in Object is specific to the model. In
Pharo for example, the class identification is not managed as a declared instance variable but as an
element part of any object. It is an index in a class-table.

1.7 About behavior

Let us continue with basic instance behavior. As in modern class-based languages, this kernel has
to represent how methods are stored and looked up.

Methods belong to a class. They define the behavior of all the instances of the class. They are stored
into a method dictionary that associates a key (the method selector) and the method body.

Since the methods are stored in a class, the method dictionary should be described in the meta-
class. Therefore, the method dictionary of a class is the value of the instance variable methodDict
defined on the metaclass Class. Each class will have its own method dictionary.

1.8 Class as an object

Now it is time to ask us about the minimal information that a class should have. Here is the mini-
mal information required:

• A list of instance variables to describe the values that the instances will hold,

• A method dictionary to hold methods,

• A superclass to look up inherited methods.

This minimal state is similar to the one of Pharo: Pharo Behavior class has a format (compact de-
scription of instance variables), method dictionary, and superclass link.

In ObjVLisp, we will had a name so that we can identify the class. As an instance factory, the meta-
class Class possesses 4 instance variables that describe a class:

• name the class name,

• superclass its superclass (we limit to single inheritance),

• i-v the list of its instance variables, and

• methodDict a method dictionary.

Since a class is an object. A class possesses the instance variable class inherited from Object that
refers to its class as any object.

Example: class Point

Figure 1-7 shows the instance variable values for the class Point as declared by the programmer
and before class initialization and inheritance take place.
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1.8 Class as an object

The class Class

Class
'Class'
Object

'name super i-v 
methodDict'

methods...

is instance of Class
named Class
inherits from Object
has instance variables

defines some methods

Figure 1-8 Class as an object.

The class Class

Class
'Class'
Object

'class name super i-v 
methodDict'

methods(new  
allocate..)

instance of 

Class
'Workstation'

Object
'class name nextNode'

methods(accept: 
send:..

The class Workstation

Class
'Point'
Object

'class x y'
methods(distance:...)

The class Point

Workstation
mac1

/
some instances of Workstation

instance of 

Workstation
mac2
mac3

instance of 

Figure 1-9 Through the prism of objects.

• It is an instance of class Class: indeed this is a class.

• It is named 'Point'.

• It inherits from class Object.

• It has two instance variables: x and y. After inheritance it will be three instance variables:
class, x, and y.

• It has a method dictionary.

Example: class Class

Figure 1-8 describes the class Class itself. Indeed it is also an object.

• It is an instance of class Class: indeed this is a class.

• It is named 'Class'.

• It inherits from class Object

• It has four locally defined instance variables: name, superclass, i-v, and methodDict.

• It has a method dictionary.

9



A class-based reflective minimal kernel

 
Object

accept:
...

id
nextNode

Node

send:

 
Workstation

accept: aPacket
  ^ aPacket target = id
         ....

accept: aPacket

2- execution on
receiver

1- lookup

aWork
station 

Figure 1-10 Sending a message is two step process: method lookup and execution.

Everything is an object

Figure 1-9 describes a typical situation of terminal instances, class and metaclasses when looked
at them using an object perspective. We see three level of instances: terminal objects, instances
of Workstation, Workstation and Point classes which are instances of Class and the metaclass
Class which is instance of itself.

1.9 Sending a message

In this kernel, the second postulate states that the only way to perform computation is via message
passing.

Sending a message is a two step process as shown by Figure 1-10

1. Method lookup: the method corresponding to the selector is looked up in the class of the
receiver and its superclasses.

2. Method execution: the method is applied to the receiver. It means that self or this in the
method will be bound to the receiver.

Conceptually sending a message can be described by the following function composition:

sending a message (receiver argument)
return apply (lookup (selector classof(receiver) receiver) receiver arguments)

Method lookup

Now the lookup process is conceptually defined as follows:

1. The lookup starts in the class of the receiver.

2. If the method is defined in that class (i.e., if the method is defined in the method dictionary),
it is returned.

3. Otherwise the search continues in the superclass of the currently explored class.

4. If no method is found and there is no superclass to explore (if we are in the class Object),
this is an error.
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1.9 Sending a message
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Figure 1-11 Looking for a method is two step process: first go to the class of receiver then follow inheri-

tance.
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name
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[ mac1 error: #coucou ]
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error:

Figure 1-12 When a message is not found, another message is sent to the receiver supporting reflective

operation.

The method lookup walks through the inheritance graph one class at a time using the superclass
link. Here is a possible description of the lookup algorithm that will be used for both instance and
class methods.

lookup (selector class receiver):
if the method is found in class

then return it
else if class == Object

then send the message error to the receiver
else lookup (selector superclass(class) receiver)

Handling errors

When the method is not found, the message error is sent as shown in Figure 1-12. Sending a mes-
sage instead of simply reporting an error using a trace or an exception is a key design decision. It
corresponds to the doesNotUnderstand: message in Pharo and it is an important reflective hook.
Indeed classes can define their own implementation of the method error and perform specific
actions in reaction of messages that are not understood. For example, it is possible to implement
proxies (objects representing other remote objects) or compile code on the fly by redefining lo-
cally such message.

Now it should be noted that the previous algorithm is not really good because in case of error
there can be a mismatch between the number of arguments of the method we are looking for and
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the number of arguments of the errormessage.

A better way to handle error is to decompose the algorithm differently as follows:

lookup (selector class):
if the method is found in class

then return it
else if class == Object

then return nil
else lookup (selector superclass(class))

And then we redefined sending a message as follows:

sending a message (receiver argument)
methodOrNil = lookup (selector classof(receiver)).
if methodOrNil is nil

then return send the message error to the receiver
else return apply(methodOrNil receiver arguments)

Remarks

This lookup is conceptually the same in Pharo where all methods are public and virtual. There is
no statically bound method, even class methods are looked up dynamically. This allows the possi-
bility to define really elegant and dynamic registration mechanism.

While the look up happens at runtime, it is often cached. Languages usually have several systems
of caches: one global (class, selector), one per call site.

1.10 Inheritance

There are two aspects of inheritance to consider:

• One static for the state where subclasses get superclass state. This instance variable inheri-
tance is static in the sense that it happens only once at class creation time i.e., at compilation-
time.

• One dynamic for behavior where methods are looked up during program execution. There
the inheritance tree is walked at run-time.

Let’s look at these two aspects.

Instance variable inheritance

Instance variable inheritance is done at class creation time and from that perspective static and
performed once. When a class C is created, its instance variables are the union of the instance vari-
ables of its superclass with the instance variables defined locally in class C. Each language defines
the exact semantics of instance variable inheritance, for example if they accept instance variables
with the same name or not. In our model, we decide to use the simplest way: there should be no
name duplicates.

instance-variables(aClass) =
union (instance-variables(superclass(aClass)), local-instance-variables(aClass))

A word about union: when the implementation of the language is based on offsets to access in-
stance variables, the union should make sure that the location of inherited instance variables are
kept ordered compared to the superclass because in general we want that methods of the super-
class can be applied to subclasses without copying them down and recompiling them. Indeed if a
method uses a variable at a given position in the instance variable lists, applying this method to
instance of subclasses should work. In the implementation proposed next chapter, we will use ac-
cessors and will not support direct access to instance variables from method body.
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1.11 Object: defining the minimal behavior of any object

send:
accept:

Workstation

new
allocate

name
superclass
iv
methodDict

Class

distanceFrom:
...

x
y

Point

error:
class?
iv-ref

Object

accept:

name
nextNode

Node

Figure 1-13 Full inheritance graph: Every class ultimately inherits from Object.

Method lookup

As previously described in Section 1.9, methods are looked up at runtime. Methods defined in su-
perclasses are reused and applied to instances of subclasses. Contrary to instance variable inheri-
tance, this part of inheritance is dynamic, i.e., it happens during program execution.

1.11 Object: defining the minimal behavior of any object

Object represents the minimal behavior that any object should understand. For example, return-
ing the class of an object, being able to handle errors, initializing an object. This is why Object is
the root of the hierarchy. Depending on language Object can be complex. In our kernel it is kept
minimal as we will show in the implementation chapter.

Figure 1-13 shows the inheritance graph without the presence of instantiation. A Workstation is
an object (should at least understand the minimal behavior), so the class Workstation inherits
directly or indirectly from the class Object. A class is an object (it should understand the minimal
behavior) so the class Class inherits from class Object. In particular, the class instance variable
is inherited from Object class.

Remark.

In Pharo, the class Object is not the root of inheritance. It is ProtoObject and Object inherits
from it. Most of the classes still inherit from Object. The design of ProtoObject is special: the
design goal of ProtoObject is to generate as many as errors as possible. Such errors can be then
captured via doesNotUnderstand: redefinition and can support different scenarios such as proxy
implementation.

1.12 Inheritance and instantiation together

Now that we saw independently the instantiation and the inheritance graph we can look at the
complete picture. Figure 1-14 shows the graphs and in particular how such graph are used during
message resolution:

• the instantiation link is used to find the class where to start to look the method associated
with the received message.

• the inheritance link is used to find inherited methods.
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Figure 1-14 Kernel with instantiation and inheritance link.

foo
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foo
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aB

foo
   ^ 10

bar 
   ^ self foo

foo
   ^ 50

Figure 1-15 self always represents the receiver.

This process is also true when we send messages to the classes themselves. There is no difference
between sending a message to an object or a class. The system always performs the same steps.

1.13 Refresh on self and super semantics

Since our experience showed us that even some book writers got key semantics of object-oriented
programming wrong, we just refresh some facts that normally programmers familiar with object-
oriented programming should fully master. For further readings refer to Pharo By Example or the
Pharo Mooc available at http://mooc.pharo.org.

• self (also called this in languages like Java). self always represents the receiver of the mes-
sage. The method lookup starts in the class of the receiver.

• super. super always represents the receiver of the message (and not the superclass). The
method lookup starts in the superclass of the class containing the super expression (and not
in the superclass of the class of the receiver: this would mean that it loops forever in case of
inheritance tree of three classes - We let you to find how).

Looking at Figure 1-15 we see that the key point is that B new bar returns 50 since the method
is dynamically looked up and self represents the receiver i.e., the instance of the class B. What is
important to see is that self sends act as a hook and that subclasses code can be injected in super-
class code.
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1.14 Object creation

foo
bar

A

bar
B

foo
    ^ 10

bar 
   ^ self foo

foo
    ^ 50foo

C

bar 
   ^ super bar + self foo

Figure 1-16 super represents the receiver but the method lookup starts in the superclass of the class of

the method using super.

A new foo
>>> 10
B new foo
>>> 50
A new bar
>>> 10
B new bar
>>> 50

For super, the situation depicted in Figure 1-16 shows that super represents the receiver, but that
when super is the receiver of a message, the method is looked up differently (starting from the
superclass of the class using super) hence C new bar returns 100 and not 20 nor 60.

B new bar
>>> 20
C new bar
>>> 100

As a conclusion, we can say that self is dynamic and super static. Let us explain this view:

• When sending a message to self the lookup of the method begins in the class of the re-
ceiver. self is bound at execution-time. We do not know its value until execution time.

• super is static in the sense that while the object it will point to is only known at execution
time, the place to look for the method is known at compile-time: it should start to look in the
class above the one containing super.

1.14 Object creation

Now we are ready to understand the creation of objects. In this model there is only one way to
create instances: we should send the message new to the class with a specification of the instance
variable values as argument.

1.15 Creation of instances of the class Point

The following examples show several point instantiations. What we see is that the model inherits
from the Lisp traditional of passing arguments using keys and values, and that the order of argu-
ments is not important.

Point new :x 24 :y 6
>>> aPoint (24 6)
Point new :y 6 :x 24
>>> aPoint (24 6)
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Figure 1-17 Metaclass role during instance creation: Applying plain message resolution.

When there is no value specified, the value of an instance variable is initialized to nil. CLOS pro-
vides the notion of default instance variable initialization. It can be added to ObjVlisp as an exer-
cise and does not bring conceptual difficulties.

Point new
>>> aPoint (nil nil)

When the same argument is passed multiple times, then the implementation takes the first oc-
curence.

Point new :y 10 :y 15
>>> aPoint (nil 10)

We should not worry too much about such details: The point is that we can pass multiple argu-
ments with a tag to identify it.

1.16 Creation of the class Point instance of Class

Since the class Point is an instance of the class Class, to create it, we should send the message
new to the class as follows:

Class new
:name 'Point'
:super 'Object'
:ivs #(x y)

>>> aClass

Here what is interesting to see is that we use exactly the same way to create an instance of the
class Point or the class itself. Note that this single way to create objects is supported by the ar-
gument variable list.

An implementation could have two different messages to create instances and classes. As soon as
the same new, allocate, initializemethods are involved, the essence of the object creation is
similar and uniform.

Instance creation: Role of the metaclass

The following diagram (Figure 1-17) shows that against common expectations, when we create a
terminal instance the metaclass Class is evolved in the process. Indeed, we send the message new
to the class, to resolve this message, the system will look for the method in the class of the receiver
(here Workstation) which the metaclass Class. The method new is found in the metaclass and
applied to the receiver: the class Workstation. Its effect is to create an instance of the class Work-
station.

The same happens when creating a class. Figure 1-18 shows the process. We send a message, now
this time, to the class Class. The system makes no exception and to resolve the message, it looks
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1.16 Creation of the class Point instance of Class

[ Class new
    :name 'Workstation'
    :superclass Object
    :iv #()
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Figure 1-18 Metaclass role during class creation: Applying plain message resolution - the self instantia-

tion link is followed.

for the method in the class of the receiver. The class of the receiver is itself, so the method new
found in Class is applied to Class (since it is the receiver of the message), and a new class is cre-
ated.

new = allocate and initialize

In fact creating an object is a two step process: Creating an instance is the composition of two ac-
tions: memory allocation allocatemessage and object initialisation message initialize.

In Pharo syntax it means:

aClass new: args = (aClass allocate) initialize: args

What we should see is that:

• The message new is a message sent to a class. The method new is a class method.

• The message allocate is a message sent to a class. The method allocate is a class method.

• The message initialize: will be executed on any newly created instance. It means that
when it will be sent to a class, a class initialize: method will be involved. When it will
be sent to a terminal object, an instance initialize: method will be executed (defined in
Object).

Object allocation: the message allocate

Allocating an object means allocating enough space to the object state but not only: it should mark
instances with their class name or id. There is a really strong invariant in the model and in general
in object-oriented programming model. Every single object must have an identifier to its class else
the system will break when trying to resolve a message.

Object allocation should return:

• A newly created instance with empty instance variables (pointing to nil for example).

• But marked with an identifier to its class.

In our model, the marking of an object as instance of a class is performed by setting the value of
the instance variable class inherited from Object. In Pharo this information is not recorded as a
instance variable but encoded in the internal virtual machine object representation.

The allocatemethod is defined on the metaclass Class. Here are some examples of allocation.

Point allocate
>>> #(Point nil nil)
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A point allocation allocates three slots: one for the class and two for x and y values.

Class allocate
>>>#(Class nil nil nil nil nil)

The allocation for an object representing a class allocates six slots: one for class and one for each
of the class instance variable: name, super, iv, keywords, and methodDict.

Object initialization

Object initialization is the process to get the values passed as arguments as key/value pair and as-
signed the value to the corresponding instance variable.

The following snippet illustrates it. An instance of class Point is created and the key/value pairs
(:y 6) and (:x 24) are specified. The instance is created and it received the initialize: messages
with the key/value pairs. The initialize: method is responsible to set the corresponding vari-
ables in the receiver.

Point new :y 6 :x 24
>>> #(Point nil nil) initialize: (:y 6 :x 24)]
>>> #(Point 24 6)

When an object is initialized as a terminal instance, two actions are performed:

• First we should get the values specified during the creation, i.e., get that y value is 6 and x
value is 24,

• Second we should assign the values to the corresponding instance variables of the created
object.

Class initialization

During its initialization a class should perform several steps:

• First as any it should get the arguments and assigned them to their corresponding instance
variables. This is basically implemented by invoking the initializemethod of Object via a
super call since Object is the superclass of Class.

• Second the inheritance of instance variables should be performed. Before this step the class
iv instance variable just contains the instance variables that are locally defined. After this
step the instance variable iv will contain all the instance variables inherited and local. In
particular this is here that the class instance variable inherited from Object is added to the
instance variables list of the subclass of Object.

• Third the class should be declared to a class pool or namespaces so that as programmers we
can access it via its name.

1.17 The Class class

Now we get a better understanding of what is the class Class. The class Class is:

• The initial metaclass and initial class.

• It defines the behavior of all the metaclasses.

• It defines the behavior of all the classes.

In particular, metaclasses define three messages related to instance creation.

• The newmessage creates an initialized instance of the class. It allocates the instance using
the class message allocate and then initializes it by sending the message initialize: to
this instance.
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Figure 1-19 Abstract metaclass: its instance (i.e., the class Node) are abstract.

• The allocatemessage. As message new it is a class message. It allocates structure for newly
created object.

• Finally the message initialize:. This message has two definitions one on Object and one
on Class.

There is a difference between the method initialize: executed on any instance creation and the
class initialize: method only executed when the created instance is a class.

• The first one is a method defined on the class of the object and potentially inherited from
Object. This initialize: method just extracts the value corresponding to each instance
variables from the argument list and sets them in the corresponding instance variables.

• The class initialize: method is executed when a new instance representing a class is ex-
ecuted. The message initialize: is sent to the newly created object but its specialisation
for classes will be found during method lookup and it will be executed. Usually this method
invokes the default ones because the class parameter should be extracted from the argument
list and set in their corresponding instance variables but in addition, instance variable inher-
itance and class declaration in the class namespace is performed.

1.18 Defining a new Metaclass

Now we can study how we can add new metaclasses and see how the system handles them. To cre-
ate a new metaclass is simple, it is enough to inherit from an existing one. May be this is obvious
to you but this is what we will check now.

Abstract

Imagine that we want to define abstract classes. We set the abstractness of a class as the fact that
it cannot create instances. To control the creation of instances of a class, we should define a new
metaclass which forbids it. Therefore we will define a metaclass whose instances (abstract classes)
cannot create instances.

We create a new metaclass named AbstractMetaclass which inherits from Class and we rede-
fine the method new in this metaclass to raise an error (as shown in Figure 1-19). The following
code snippet defines this new metaclass.

Class new
:name 'AbstractMetaclass'
:super 'Class'
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Figure 1-20 Abstract metaclass at work.

AbstractMetaclass
addMethod: #new
body: [ :receiver :initargs | receiver error: 'Cannot create instance of class' ]

Two facts describe the relations between this metaclass and the class Class:

• AbstractMetaclass is a class: It is instance of Class.

• AbstractMetaclass defines class behavior: It inherits from Class.

Now we can define an abstract class Node.
AbstractMetaclass new :name 'Node' :super 'Object'

Sending a message new to the class Node will raise an error.

Node new
>>> Cannot create instance of class

A subclass of Node, for example Workstation, can be a concrete class by being an instance of Class
instead of AbstractMetaclass but still inheriting from Node. What we see in Figure 1-20 is that
there are two links: instanciation and inheritance and the method lookup follows them as we pre-
sented previously: always start in the class of the receiever and follow the inheritance link.

What is key to understand is that when we send the messsage new to the class Workstation, we
look for methods first in the metaclass Class. When we send the message new to class Node we
look in its class: AbstractMetaclass as shown in Figure 1-20. In fact we do what we do for any
instances: we look in the class of the receiver.

A class method is just implemented and following the same semantics that instance methods: Send-
ing the message error to the class Node starts in AbstractMetaclass and since we did not rede-
fine it locally, and it is not found there, the lookup will continue in the superclass of Abstract-
Class: the class Class and then the superclass of class Class, the class Object.

1.19 About the 6th postulate

The 6th postulate of ObjVLisp is wrong. Let us read it again: If the instance variables owned by an ob-
ject define a local environment, there are also class variables defining a global environment shared by all the
instances of a same class. These class variables are defined at the metaclass level according to the following
equation: class variable [an-object] = instance variable [an-object’s class].

It says that class instance variables are equivalent to shared variables between instances and this
is wrong. Let us study this. According to the 6th postulate, a shared variable between instances
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1.20 Conclusion

is equal to an instance variable of the class. The definition is not totally clear so let us look at an
example given in the article.

Illustrating the problem

Imagine that we would like the constant character ’*’ to be a class variable shared by all the points
of a same class. We redefine the Point class as before, but metaclass of which (let us call it Meta-
Point) specifies this common character For example if a point has a shared variable named char,
this instance variable should be defined in the class of the class Point called MetaPoint. The au-
thor proposes to define a new metaclass MetaPoint to hold a new instance variable to represent a
shared variable between points.

Class new
:name 'MetaPoint'
:super 'Class'
:ivs #(char)

Then he proposes to use it as follows:

MetaPoint new
:name Point
:super 'Object'
:ivs #(x y)
:char '*'

The class Point can define a method that accesses the character just by going the class level. So
why this is approach is wrong? Because it mixes levels. The instance variable char is not a class
information. It describes the terminal instances and not the instance of the metaclass. Why the
metaclass MetaPoint would need a char instance variable.

The solution

The solution is that the shared variable char should be held in a list of the shared variables of the
class Point. Any point instance can access this variable. The implication is that a class should have
an extra information to describe it: an instance variable sharedVariable holding pairs i.e., vari-
able and its value. We should be able to write:

Class new
:name Point
:super 'Object'
:ivs #(x y)
:sharedivs {#char -> '*'}

Therefore the metaclass Class should get an extra instance variable named sharedivs and each
of its instances (the classes Point, Node, Object) can have different values and such values can be
shared among their instances by the compiler.

What we see is that sharedivs is from the Class vocabulary and we do not need one extra meta-
class each time we want to share a variable. This design is similar to the one of Pharo where a
class has a classVariable instance variable holding variable shared in all the subclasses of the class
defining it.

1.20 Conclusion

We presented a really small kernel composed of two classes Object root of the inheritance tree
and Class the first metaclass root of the instantiation tree. We revisited all the key points related
to method lookup, object and class creation and initialisation. In the subsequent chapter we pro-
pose you to implement such kernel.
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Further readings

The kernel presented in this chapter is a kernel with explicit metaclasses and as such it is not a
panacea. Indeed it raised metaclass composition problems as explained in Bouraqadi et al. excel-
lent article [BLR98]or [DF94].
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CHA P T E R2
Building a minimal reflective class-based

kernel

The objectives of this chapter is to help you step by step to implement the ObjVlisp model ex-
plained in the previous chapter. ObjVlisp was designed by P. Cointe who got inspired by the kernel
of Smalltalk-78. It has explicit metaclasses and it is composed of two classes Object and Class.

2.1 Objectives

During the previous chapter, you saw the main points of the ObjVLisp model, now you will imple-
ment it. The goals of this implementation are to give a concrete understanding of the concepts
presented previously. Here are some of the points you can deeply understand while writing the
implementation:

• What is a possible object structure?

• What is object allocation and initialization?

• What is class initialization?

• What the semantics of the method lookup?

• What is a reflective kernel?

• What are the roles of the classes Class and Object?

• What is the role of a metaclass?

2.2 Preparation

In this section we discuss the set up that you will use, the implementation choices and the conven-
tions that we will follow during all this chapter.

Getting Pharo

You need to download and install Pharo from http://www.pharo.org/. You need a virtual machine,
and the couple image and changes. You can use http://get.pharo.org to get a script to download
Pharo.

The current version that you can use is Pharo 6.1.

wget -O- get.pharo.org/61+vm | bash
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Building a minimal reflective class-based kernel

You can use the book Pharo by Example from http://www.pharo.org/PharoByExample/ for an overview
of the syntax and the system.

Getting infrastructure definitions

All the necessary definitions are provided as a Monticello package. It contains all the classes, the
method categories and the method signatures of the methods that you have to implement. It pro-
vides additional functionality such as a dedicated inspector and some extra methods that will
make your life easy and help you to concentrate on the essence of the model. It contains also all
the tests of the functionality you have to implement.

To load the code, execute the following expression:

Gofer new
url: 'http://smalltalkhub.com/mc/StephaneDucasse/ObjVLispSkeleton/main';
package: 'ObjVLispSkeleton';
load.

Alternatively, to load the code open a monticello browser,

• Add a file repository to point to an ObjVLispSkeleton project under StephaneDucasse in the
ObjVLispSkeleton project at http://www.smalltalkhub.com. Use the following expression in the
smalltalkhub repository creation pop up.

MCSmalltalkhubRepository
owner: 'StephaneDucasse'
project: 'ObjVLispSkeleton'
user: ''
password: ''

• Select the latest file and load it.

Running tests

For each functionality you will have to run some tests.

For example to run a particular test named testPrimitive,

• evaluate the following expression (ObjTest selector: #testPrimitiveStructure) run
or

• click on the icon of the method named testPrimitiveStructure.

Note that since you are developing the kernel, to test it we implemented manually some mocks of
the classes and kernel. This is the setup method of the test classes that build this fake kernel. Now
pay attention because the setups are often taking shortcuts, so do not copy them blindly.

2.3 Naming conventions

We use the following conventions: we name as primitives all the Pharo methods that participate in
the building of ObjVLisp. These primitives are mainly implemented as methods of the class Obj.
Note that in a Lisp implementation such primitives would be just lambda expressions, in a C imple-
mentation such primitives would be represented by C functions.

To help you to distinguish between classes in the implementation language (Pharo) and the Ob-
jVLisp model, we prefix all the ObjVLisp classes by Obj. Finally, some of the crucial and confusing
primitives (mainly the class structure ones) are all prefixed by obj. For example the primitive that
given an objInstance returns its class identifier is named objClassId. We also talk about objIn-
stances, objObjects and objClasses to refer to specific instances, objects or classes defined in Ob-
jVLisp.
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2.4 Inheriting from class Array

2.4 Inheriting from class Array

We do not want to implement a scanner, a parser and a compiler for ObjVLisp but concentrate on
the essence of the language. That’s why we chose to use as much as possible the implementation
language, here Pharo. As Pharo does not support macro definition, we will use as much as possible
the existing classes to avoid extra syntactic problems.

In our implementation, every object in the ObjVLisp world is instance of the class Obj. The class
Obj is a subclass of Array.

Since Obj is a subclass of Array, #(#ObjPoint 10 15) is an objInstance of the class ObjPoint
which is also an array instance of the Pharo class ObjClass.

As we will see:

• #(#ObjPoint 10 15) represents an objPoint (10,15). It is an objInstance of the class Obj-
Point.

• #(#ObjClass #ObjPoint #ObjObject #(class x y) #(:x :y) nil ) is the array that
represents the objclass ObjPoint.

About representation choices

You can skip this discussion in a first reading. We could have implemented ObjVLisp functionality
at the class level of a class named Obj inheriting simply from Object. However, to use the ObjVlisp
primitive (a Pharo method) objInstanceVariableValue: anObject for: anInstanceVari-
able that returns the value of the instance variable in anObject, we would have been forced to
write the following expression:

Obj objInstanceVariableValue: 'x' for: aPoint

We chose to represent any ObjVLisp object by an array and to define the ObjVLisp functionality in
the instance side of the class Obj (a subclass of Array). That way we can write in a more natural
and readable way the previous functionality as:

aPoint objInstanceVariableValue: 'x'.

2.5 Facilitating objclass class access

We need a way to store and access ObjVLisp classes. As a solution, on the class level of the Pharo
class Obj we defined a dictionary holding the defined classes. This dictionary acts as the names-
pace for our language. We defined the following methods to store and access defined classes.

• declareClass: anObjClass stores the objinstance anObjClass given as argument in the
class repository (here a dictionary whose keys are the class names and values the ObjVLisp
classes themselves).

• giveClassNamed: aSymbol returns the ObjVLisp class named aSymbol if it exists. The class
should have been declared previously.

With such methods we can write code like the following one that looks for the class of the class
ObjPoint.

Obj giveClassNamed: #ObjPoint
>>> #(#ObjClass 'ObjPoint' #ObjObject #(class x y) #(:x :y) ... )

To make class access less heavy, we also implemented a shortcut: We trap messages not under-
stood sent to Obj and look into the defined class dictionary. Since ObjPoint is an unknown mes-
sage, this same code is then written as:

Obj ObjPoint
>>> #(#ObjClass 'ObjPoint' #ObjObject #(class x y) #(:x :y) ... )
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#(
    #ObjClass 
    #ObjPoint 
    #ObjObject 
    #(class x y) 
    #(:x :y) 
    nil 
)

offsetForClass (1)

offsetForSuperclass (3)
offsetForName (2)

offsetForIVs (4)
offsetForKeywords (5)
offsetForMethodDict (6)

Figure 2-1 Class structure representation.

Now you are ready to start.

2.6 Structure and primitives

The first issue is how to represent objects. We have to agree on an initial representation. In this
implementation we chose to represent the objinstances as arrays (instances of Obj a subclass of
Array). In the following we use the terms array for talking about instances of the class Obj.

Your job.

Check that the class Obj exists and inherits from Array.

2.7 Structure of a class

The first object that we will create is the class ObjClass. Therefore we focus now on the minimal
structure of the classes in our language.

An objinstance representing a class has the following structure: an identifier to its class, a name,
an identifier to its superclass (we limit the model to single inheritance), a list of instance variables,
a list of initialization keywords, and a method dictionary.

For example the class ObjPoint has then the following structure:

#(#ObjClass #ObjPoint #ObjObject #(class x y) #(:x :y) nil)

It means that ObjPoint is an instance of ObjClass, is named #ObjPoint, inherits from a class
named ObjObject, has three instance variables, two initialization keywords and an uninitialized
method dictionary. To access this structure we define some primitives as shown in Figure 2-1.

Your job.

The test methods of the class RawObjTest that are in the categories 'step1-tests-structure of
objects' and 'step2-tests-structure of classes' give some examples of structure accesses.

RawObjTest >> testPrimitiveStructureObjClassId
"(self selector: #testPrimitiveStructureObjClassId) run"

self assert: (pointClass objClassId = #ObjClass).
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#(Class 'Point' 'Object' '(x y) ....)

objName
   ^ self at: self offsetForName

name superclass instancevariables

Figure 2-2 Using offset to access information.

RawObjTest >> testPrimitiveStructureObjIVs
"(self selector: #testPrimitiveStructureObjIVs) run"

self assert: ((pointClass objIVs) = #(#class #x #y)).

Figure 2-2 shows how offsets are used to access in an controlled manner the raw objclass informa-
tion.

Implement the primitives that are missing to run the following tests testPrimitiveStructure-
ObjClassId, testPrimitiveStructureObjIVs, testPrimitiveStructureObjKeywords, test-
PrimitiveStructureObjMethodDict, testPrimitiveStructureObjName, and testPrimitiveStruc-
tureObjSuperclassId.

You can execute them by selecting the following expression (RawObjTest selector: #test-
PrimitiveStructureObjClassId) run. Note that arrays start at 1 in Pharo. Below is the list of
the primitives that you should implement.

Implement in protocol 'object structure primitives' the primitives that manage:

• the class of the instance represented as a symbol. objClassId, objClassId: aSymbol. The
receiver is an objObject. This means that this primitive can be applied on any objInstances
to get its class identifier.

Implement in protocol 'class structure primitives' the primitives that manage:

• the class name: objName, objName: aSymbol. The receiver is an objClass.

• the superclass: objSuperclassId, objSuperclassId: aSymbol. The receiver is an objClass.

• the instance variables: objIVs, objIVs: anOrderedCollection. The receiver is an obj-
Class.

• the keyword list: objKeywords, objKeywords: anOrderedCollection. The receiver is an
objClass.

• the method dictionary: objMethodDict, objMethodDict: anIdentityDictionary. The
receiver is an objClass.

2.8 Finding the class of an object

Every object keeps the identifier of its class (its name). For example an instance of ObjPoint has
then the following structure: #(#ObjPoint 10 15) where #ObjPoint is a symbol identifying the
class ObjPoint.

Your job.

Using the primitive giveClassNamed: aSymbol defined at the class level of Obj, define the primi-
tive objClass in the protocol 'object-structure primitive' that returns the objInstance that
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offsetFromClassOfInstanceVariable: #x

>>> 2

#(
    #ObjClass 
    #ObjPoint 
    #ObjObject 
    #(class x y) 
    #(:x :y) 
    nil 
)

Figure 2-3 Instance variable offset asked to the class.

offsetFromObjectOfInstanceVariable: #x

>>> 2

#( #ObjClass #ObjPoint #ObjObject #(class 
x y) #(:x :y)  nil )

#(Point 100 200)

Figure 2-4 Instance variable offset asked to the instance itself.

represents its class (Classes are objects too in ObjVLisp).

Make sure that you execute the test method: testClassAccess

RawObjTest >> testClassAccess
"(self selector: #testClassAccess) run"

self assert: (aPoint objClass = pointClass)

Now we will be ready to manipulate objInstances via proper API. We will now use the class Ob-
jTest for more elaborated tests.

2.9 Accessing object instance variable values

In the protocol 'iv management' define a method called offsetFromClassOfInstanceVari-
able: aSymbol that returns the offset of the instance variable represented by the symbol given in
parameter. It returns 0 if the variable is not defined. Look at the tests #testIVOffset of the class
ObjTest. (Hints: Use the Pharo method indexOf:). Pay attention that such primitive is applied to
an objClass as shown in the test.

ObjText >> testIVOffset
"(self selector: #testIVOffset) run"

self assert: ((pointClass offsetFromClassOfInstanceVariable: #x) = 2).
self assert: ((pointClass offsetFromClassOfInstanceVariable: #lulu) = 0)

Make sure that you execute the test method: testIVOffset

Using the preceeding method, define in the protocol 'iv management'
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2.10 Object allocation and initialization

1. the method offsetFromObjectOfInstanceVariable: aSymbol that returns the offset of
the instance variable. Note that this time the method is applied to an objInstance presenting
an instance and not a class (as shown in Figure 2-4).

2. the method valueOfInstanceVariable: aSymbol that returns the value of this instance
variable in the given object as shown in the test below.

The following test illustrates the expected behavior

ObjTest >> testIVOffsetAndValue
"(self selector: #testIVOffsetAndValue) run"

self assert: ((aPoint offsetFromObjectOfInstanceVariable: #x) = 2).
self assert: ((aPoint valueOfInstanceVariable: #x) = 10)

Note that for the method offsetFromObjectOfInstanceVariable: you can check that the in-
stance variable exists in the class of the object and else raise an error using the Pharo method er-
ror:.

Make sure that you execute the test method: testIVOffsetAndValue and it passes.

2.10 Object allocation and initialization

The creation of an object is the composition of two elementary operations: its ’allocation’ and its
initialization.

We now define all the primitives that allow us to allocate and initialize an object. Remember that

1. the allocation is a class method that returns a nearly empty structure, nearly empty because
the instance represented by the structure should at least knows its class and

2. the initialization of an instance is an instance method that given a newly allocated instance
and a list of initialization arguments fill the instance.

2.11 Instance allocation

Your job.

In the protocol 'instance allocation' implement the primitive called allocateAnInstance
that sent to an objClass returns a new instance whose instance variable values are nil and whose
objClassId represents the objClass.

As shown in the class ObjTest, if the class ObjPoint has two instance variables: ObjPoint allo-
cateAnInstance returns #(#ObjPoint nil nil).

ObjTest >> testAllocate
"(self selector: #testAllocate) run"
| newInstance |
newInstance := pointClass allocateAnInstance.
self assert: (newInstance at: 1) = #ObjPoint.
self assert: (newInstance size) = 3.
self assert: (newInstance at: 2) isNil.
self assert: (newInstance at: 3) isNil.
self assert: (newInstance objClass = pointClass)

Make sure that you execute the test method: testAllocate

2.12 Keywords primitives

The original implementation of ObjVLisp uses the facility offered by the Lisp keywords to ease the
specification of the instance variable values during instance creation. It also provides an uniform
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and unique way to create objects. We have to implement some functionality to support keywords.
However as this is not really interesting that you lose time we give you all the necessary primi-
tives.

Your job.

All the functionality for managing the keywords are defined into the protocol 'keyword manage-
ment'. Read the code and the associated test called testKeywords in the class ObjTest.

ObjTest >> testKeywords
"(self selector: #testKeywords) run"

| dummyObject |
dummyObject := Obj new.
self assert:

((dummyObject generateKeywords: #(#titi #toto #lulu))
= #(#titi: #toto: #lulu:)).

self assert:
((dummyObject keywordValue: #x

getFrom: #(#toto 33 #x 23)
ifAbsent: 2) = 23).

self assert:
((dummyObject keywordValue: #x

getFrom: #(#toto 23)
ifAbsent: 2) = 2).

self assert:
((dummyObject returnValuesFrom: #(#x 22 #y 35) followingSchema: #(#y #yy #x #y))

= #(35 nil 22 35))

Make sure that you execute the test method: testKeywords and that it passes.

2.13 Object initialization

Once an object is allocated, it may be initialized by the programmer by specifying a list of initial-
ization values. We can represent such list by an array containing alternatively a keyword and a
value like #(#toto 33 #x 23) where 33 is associated with #toto and 23 with #x.

Your job.

Read in the protocol 'instance initialization' the primitive initializeUsing: anArray
that sent an object with an initialization list returns an initialized object.

ObjTest >> testInitialize
"(self selector: #testInitialize) run"

| newInstance |
newInstance := pointClass allocateAnInstance.
newInstance initializeUsing: #(#y: 2 #z: 3 #t: 55 #x: 1).
self assert: (newInstance at: 1) equals: #ObjPoint.
self assert: (newInstance at: 2) equals: 1.
self assert: (newInstance at: 3) equals: 2.

2.14 Static inheritance of instance variables

Instance variables are statically inherited at the class creation time. The simplest form of instance
variable inheritance is to define the complete set of instance variables as the ordered fusion be-
tween the inherited instance variables and the locally defined instance variables. For simplicity
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reason and as most of the languages, we chose to forbid duplicated instance variables in the inheri-
tance chain.

Your job.

In the protocol 'iv inheritance', read and understand the primitive computeNewIVFrom: su-
perIVOrdCol with: localIVOrdCol.

The primitive takes two ordered collections of symbols and returns an ordered collection contain-
ing the union of the two ordered collections but with the extra constraint that the order of ele-
ments of the first ordered collection is kept. Look at the test method testInstanceVariableIn-
heritance below for examples.

Make sure that you execute the test method: testInstanceVariableInheritance and that is
passes.

ObjTest >> testInstanceVariableInheritance
"(self selector: #testInstanceVariableInheritance) run"

"a better choice would be to throw an exception if there are duplicates"
self assert:

((Obj new computeNewIVFrom: #(#a #b #c #d) asOrderedCollection
with: #(#a #z #b #t) asOrderedCollection)
= #(#a #b #c #d #z #t) asOrderedCollection).

self assert:
((Obj new computeNewIVFrom: #() asOrderedCollection

with: #(#a #z #b #t) asOrderedCollection)
= #(#a #z #b #t) asOrderedCollection)

Side remark

You could think that keeping the same order of the instance variables between a superclass and
its subclass is not an issue. This is partly true in this simple implementation because the instance
variable accessors compute each time the corresponding offset to access an instance variable using
the primitive offsetFromClassOfInstanceVariable:. However, the structure (instance variable
order) of a class is hardcoded by the primitives. That’s why your implementation of the primitive
computeNewIVFrom:with: should take care of that aspect.

2.15 Method management

A class stores the behavior (expressed by methods) shared by all its instances into a method dictio-
nary. In our implementation, we represent methods by associating a symbol to a Pharo block a kind
of anonymous method. The block is then stored in the method dictionary of an objClass.

In this implementation we do not offer the ability to access directly instance variables of the class
in which the method is defined. This could be done by sharing a common environment among all
the methods. The programmer has to use accessors or the setIV and getIV objMethods defined
on ObjObject to access the instance variables. You can find the definition of such methods in the
bootstrap method on the class side of Obj.

In our ObjVLisp implementation, we do not have a syntax for message passing. Instead we call
the primitives using the Pharo syntax for message passing (using the message send:withArgu-
ments:).

The following expression objself getIV: x is expressed in ObjVLisp as objself send: #getIV
withArguments: #(#x).

The following code describes the definition of the accessor method x defined on the objClass Obj-
Point that invokes a field access using the message getIV.
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ObjPoint
addUnaryMethod: #accessInstanceVariableX
withBody: 'objself send: #getIV withArguments: #(#x)'.

As a first approximation this code will create the following block that will get stored into the class
method dictionary. [ :objself | objself send: #getIV withArguments: #(#x) ]. As you
may notice, in our implementation, the receiver is always an explicit argument of the method.
Here we named it objself.

Defining a method and sending a message

As we want to keep this implementation as simple as possible, we define only one primitive for
sending a message: it is send:withArguments:. To see the mapping between Pharo and ObjVlisp
ways of expressing message sent, look at the comparison below:

Pharo Unary: self odd
ObjVLisp: objself send: #odd withArguments: #()

Pharo Binary: a + 4
ObjVLisp: a send: #+ withArguments: #(#(4))

Pharo Keyword: a max: 4
ObjVLisp: a send: #max: withArguments: #(4)

While in Pharo you would write the following method definition:

bar: x
self foo: x

In our implementation of ObjVlisp you write:

anObjClass
addMethod: #bar:
args: 'x'
withBody: 'objself send: #foo: withArguments: #x'.

Your job.

We provide all the primitives that handle with method definition. In the protocol 'method man-
agement' look at the methods addMethod: aSelector args: aString withBody: aString-
Block, removeMethod: aSelector and doesUnderstand: aSelector. Implement bodyOfMethod:
aSelector.

Make sure that you execute the test method: testMethodManagement

ObjTest >> testMethodManagement
"(self selector: #testMethodManagment) run"
self assert: (pointClass doesUnderstand: #x).
self assert: (pointClass doesUnderstand: #xx) not.

pointClass
addMethod: #xx
args: ''
withBody: 'objself valueOfInstanceVariable: #x '.

self assert: (((pointClass bodyOfMethod: #xx) value: aPoint) = 10).
self assert: (pointClass doesUnderstand: #xx).
pointClass removeMethod: #xx.
self assert: (pointClass doesUnderstand: #xx) not.
self assert: (((pointClass bodyOfMethod: #x) value: aPoint) = 10)
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2.16 Message passing and dynamic lookup

2.16 Message passing and dynamic lookup

Sending a message is the result of the composition of method lookup and execution. The following
basicSend:withArguments:from: primitive just implements it. First it looks up the method into
the class or superclass of the receiver then if a method has been found it execute it, else lookup:
returned nil and we raise a Pharo error.

Obj >> basicSend: selector withArguments: arguments from: aClass
"Execute the method found starting from aClass and whose name is selector.
The core of the sending a message, reused for both a normal send or a super one."
| methodOrNil |
methodOrNil := aClass lookup: selector.
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) , arguments ]
ifNil: [ Error signal: 'Obj message' , selector asString, ' not understood' ]

Based on this primitive we can express send:withArguments: and super:withArguments: as
follows:

Obj >> send: selector withArguments: arguments
"send the message whose selector is <selector> to the receiver. The arguments of the
messages are an array <arguments>. The method is lookep up in the class of the
receiver. self is an objObject or a objClass."

^ self basicSend: selector withArguments: arguments from: self objClass

2.17 Method lookup

The primitive lookup: selector applied to an objClass should return the method associated to
the selector if it found it, else nil to indicate that it failed.

Your job.

Implement the primitive lookup: selector that sent to an objClass with a method selector, a
symbol and the initial receiver of the message, returns the method-body of the method associated
with the selector in the objClass or its superclasses. Moreover if the method is not found, nil is re-
turned.

Make sure that you execute the test methods: testNilWhenErrorInLookup and testRaisesEr-
rorSendWhenErrorInLookup whose code is given below:

ObjTest >> testNilWhenErrorInLookup
"(self selector: #testNilWhenErrorInLookup) run"

self assert: (pointClass lookup: #zork) isNil.
"The method zork is NOT implement on pointClass"

ObjTest >> testRaisesErrorSendWhenErrorInLookup
"(self selector: #testRaisesErrorSendWhenErrorInLookup) run"

self should: [ pointClass send: #zork withArguments: { aPoint } ] raise: Error.
"Open a Transcript to see the message trace"

2.18 Managing super

To invoke a superclass hidden method, in Java and Pharo you use super, which means that the
lookup up will start above the class defining the method containing the super expression. In fact
we can consider that in Java or Pharo, super is a syntactic sugar to refer to the receiver but chang-
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ing where the method lookup starts. This is what we see in our implementation where we do not
have syntactic support.

Let us see how we will express the following situation.

bar: x

super foo: x

In our implementation of ObjVlisp we do not have a syntactic construct to express super, you have
to use the super:withArguments: Pharo message as follows.

anObjClass
addMethod: #bar:
args: 'x'
withBody: 'objself super: #foo: withArguments: #(#x) from:

superClassOfClassDefiningTheMethod'.

Note that superClassOfClassDefiningTheMethod is a variable that is bound to the superclass of
anObjClass i.e., the class defining the method bar (see later).

Pharo Unary: super odd
ObjVLisp: objself super: #odd withArguments: #() from:

superClassOfClassDefiningTheMethod

Pharo Binary: super + 4
ObjVLisp: objself super: #+ withArguments: #(4) from: superClassOfClassDefiningTheMethod

Pharo Keyword: super max: 4
ObjVlisp: objself super: #max: withArguments: #(4) from:

superClassOfClassDefiningTheMethod

2.19 Representing super

We would like to explain you where the superClassOfClassDefiningTheMethod variable comes
from. When we compare the primitive send:withArguments:, for super sends we added a third
parameter to the primitive and we called it super:withArguments:from:.

This extra parameter corresponds to the superclass of class in which the method is defined. This
argument should always have the same name, i.e., superClassOfClassDefiningTheMethod. This
variable will be bound when the method is added in the method dictionary of an objClass.

If you want to understand how we bind the variable, here is the explanation: In fact, a method
is not only a block but it needs to know the class that defines it or its superclass. We added such
information using currification. (a currification is the transformation of a function with n argu-
ments into function with less argument but an environment capture: f(x,y)= (+ x y) is trans-
formed into a function f(x)=f(y)(+ x y) that returns a function of a single argument y and
where x is bound to a value and obtain a function generator). For example, f(2,y) returns a func-
tion f(y)=(+ 2 y) that adds its parameter to 2. A currification acts as a generator of function
where one of the argument of the original function is fixed.

In Pharo we wrap the block representing the method around another block with a single param-
eter and we bind this parameter with the superclass of the class defining the method. When the
method is added to the method dictionary, we evaluate the first block with the superclass as pa-
rameter as illustrated as follows:

method := [ :superClassOfClassDefiningTheMethod |
[ :objself :otherArgs |

... method code ...
]]

method value: (Obj giveClassNamed: self objSuperclassId)
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So now you know where the superClassOfClassDefiningTheMethod variable comes from. Make
sure that you execute the test method: testMethodLookup and that is passes.

Your job.

Now you should be implement super: selector withArguments: arguments from: aSuper-
class using the primitive basicSend:withArguments:from:.

2.20 Handling not understood messages

Now we can revisit error handling. Instead of raising a Pharo error, we want to send an ObjVlisp
message to the receiver of the message to give him a chance to trap the error.

Compare the two following versions of basicSend: selector withArguments: arguments
from: aClass and propose an implementation of sendError: selector withArgs: arguments.

Obj >> basicSend: selector withArguments: arguments from: aClass
"Execute the method found starting from aClass and whose name is selector."
"The core of the sending a message, reused for both a normal send or a super one."
| methodOrNil |
methodOrNil := (aClass lookup: selector).
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) , arguments ]
ifNil: [ Error signal: 'Obj message' , selector asString, ' not understood' ]

Obj >> basicSend: selector withArguments: arguments from: aClass
"Execute the method found starting from aClass and whose name is selector."
"The core of the sending a message, reused for both a normal send or a super one."
| methodOrNil |
methodOrNil := (aClass lookup: selector).
^ methodOrNil

ifNotNil: [ methodOrNil valueWithArguments: (Array with: self) , arguments ]
ifNil: [ self sendError: selector withArgs: arguments ]

It should be noted that the objVlisp method is defined as follows in the ObjObject class (see the
bootstrap method on the class side of Obj). The obj errormethod expects a single parameter: an
array of arguments whose first element is the selector of the not understood message.

objObject
addMethod: #error
args: 'arrayOfArguments'
withBody: 'Transcript show: ''error '', arrayOfArguments first. ''error '',
arrayOfArguments first'.

Obj >> sendError: selector withArgs: arguments
"send error wrapping arguments into an array with the selector as first argument.
Instead of an array we should create a message object."

^ self send: #error withArguments: {(arguments copyWithFirst: selector)}

Make sure that you read and execute the test method: testSendErrorRaisesErrorSendWhen-
ErrorInLookup. Have a look at the implementation of the #errormethod defined in ObjObject
and in the assembleObjectClass of the ObjTest class.

2.21 Bootstrapping the system

Now you have implemented all the behavior we need, you are ready to bootstrap the system: this
means creating the kernel consisting of ObjObject and ObjClass classes from themselves. The
idea of a smart bootstrap is to be as lazy as possible and to use the system to create itself by creat-
ing fast a fake but working first class with which we will build the rest.
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Three steps compose the ObjVlisp bootstrap,

1. we create by hand the minimal part of the objClass ObjClass and then

2. we use it to create normally ObjObject objClass and then

3. we recreate normally and completely ObjClass.

These three steps are described by the following bootstrap method of Obj class. Note the bootstrap
is defined as class methods of the class Obj.

Obj class >> bootstrap
"self bootstrap"

self initialize.
self manuallyCreateObjClass.
self createObjObject.
self createObjClass.

To help you to implement the functionality of the objClasses ObjClass and ObjObject, we defined
another set of tests in the class ObjTestBootstrap. Read them.

2.22 Manually creating ObjClass

The first step is to create manually the class ObjClass. By manually we mean create an array (be-
cause we chose an array to represent instances and classes in particular) that represents the obj-
Class ObjClass, then define its methods. You will implement/read this in the primitive manually-
CreateObjClass as shown below:

Obj class >> manuallyCreateObjClass
"self manuallyCreateObjClass"

| class |
class := self manualObjClassStructure.
Obj declareClass: class.
self defineManualInitializeMethodIn: class.
self defineAllocateMethodIn: class.
self defineNewMethodIn: class.
^ class

For this purpose, you have to implement/read all the primitives that compose it.

2.23 Your job.

At the class level in the protocol 'bootstrap objClass manual' read or implement: the primi-
tive manualObjClassStructure that returns an objObject that represents the class ObjClass.

Make sure that you execute the test method: testManuallyCreateObjClassStructure

• As the initialize of this first phase of the bootstrap is not easy we give you its code. Note
that the definition of the objMethod initialize is done in the primitive method define-
ManualInitializeMethodIn:.

Obj class >> defineManualInitializeMethodIn: class

class
addMethod: #initialize
args: 'initArray'
withBody:

'| objsuperclass |
objself initializeUsing: initArray. "Initialize a class as an object. In the

bootstrapped system will be done via super"
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objsuperclass := Obj giveClassNamed: objself objSuperclassId ifAbsent: [nil].
objsuperclass isNil
ifFalse:

[ objself
objIVs: (objself computeNewIVFrom: objsuperclass objIVs with: objself

objIVs)]
ifTrue:

[ objself objIVs: (objself computeNewIVFrom: #(#class) with: objself objIVs)].
objself
objKeywords: (objself generateKeywords: (objself objIVs copyWithout: #class)).

objself objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: objself.
objself'

Note that this method works without inheritance since the class ObjObject does not exist yet.

The primitive defineAllocateMethodIn: anObjClass defines in anObjClass passed as argument
the objMethod allocate. allocate takes only one argument: the class for which a new instance
is created as shown below:

defineAllocateMethodIn: class

class
addUnaryMethod: #allocate
withBody: 'objself allocateAnInstance'

Following the same principle, define the primitive defineNewMethodIn: anObjClass that defines
in anObjClass passed as argument the objMethod new. new takes two arguments: a class and an
initargs-list. It should invoke the objMethod allocate and initialize.

Your job.

Make sure that you read and execute the test method: testManuallyCreateObjClassAllocate

Remarks

Read carefully the following remarks below and the code.

• In the objMethod manualObjClassStructure, the instance variable inheritance is simu-
lated. Indeed the instance variable array contains #class that should normally be inherited
from ObjObject as we will see in the third phase of the bootstrap.

• Note that the class is declared into the class repository using the method declareClass:.

• Note the method #initialize is method of the metaclass ObjClass: when you create a
class the initialize method is invoked on a class! The initialize objMethod defines on Obj-
Class has two aspects: the first one dealing with the initialization of the class like any other
instance (first line). This behavior is normally done using a super call to invoke the ini-
tializemethod defined in ObjObject. The final version of the initializemethod will do
it using perform. The second one dealing with the initialization of classes: performing the
instance variable inheritance, then computing the keywords of the newly created class. Note
in this final step that the keyword array does not contain the #class: keyword because we
do not want to let the user modify the class of an object.

2.24 Creation of ObjObject

Now you are in the situation where you can create the first real and normal class of the system:
the class ObjObject. To do that you send the message new to class ObjClass specifying that the
class you are creating is named #ObjObject and only have one instance variable called class.
Then you will add the methods defining the behavior shared by all the objects.
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Your job.

Implement/read the following methods:

• the primitive objObjectStructure that creates the ObjObject by invoking the newmes-
sage to the class ObjClass:

Obj class >> objObjectStructure

^ (self giveClassNamed: #ObjClass)
send: #new
withArguments: #(#(#name: #ObjObject #iv: #(#class)))

The class ObjObject is named ObjObject, has only one instance variable class and does not have
a superclass because it is the inheritance graph root.

Now implement the primitive createObjObject that calls objObjectStructure to obtain the
objObject representing objObject class and define methods in it. To help you we give here the
beginning of such a method

Obj class >> createObjObject
| objObject |
objObject := self objObjectStructure.
objObject addUnaryMethod: #class withBody: 'objself objClass'.
objObject addUnaryMethod: #isClass withBody: 'false'.
objObject addUnaryMethod: #isMetaclass withBody: 'false'.
...
...
^ objObject

Implement the following method in ObjObject

• the objMethod class that given an objInstance returns its class (the objInstance that repre-
sents the class).

• the objMethod isClass that returns false.

• the objMethod isMetaClass that returns false.

• the objMethod error that takes two arguments the receiver and the selector of the original
invocation and raises an error.

• the objMethod getIV that takes the receiver and an attribute name, aSymbol, and returns its
value for the receiver.

• the objMethod setIV that takes the receiver, an attribute name and a value and sets the
value of the given attribute to the given value.

• the objMethod initialize that takes the receiver and an initargs-list and initializes the re-
ceiver according to the specification given by the initargs-list. Note that here the initial-
izemethod only fill the instance according to the specification given by the initargs-list.
Compare with the initializemethod defined on ObjClass.

Make sure that you read and execute the test method: testCreateObjObjectStructure

In particular notice that this class does not implement the class method new because it is not a
metaclass but does implement the instance method initialize because any object should be ini-
tialized.

Your job.

• Make sure that you read and execute the test method: testCreateObjObjectMessage

• Make sure that you read and execute the test method: testCreateObjObjectInstanceMes-
sage
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2.25 Creation of ObjClass

Following the same approach, you can now recreate completely the class ObjClass. The primitive
createObjClass is responsible to create the final class ObjClass. So you will implement it and
define all the primitive it needs. Now we only define what is specific to classes, the rest is inherited
from the superclass of the class ObjClass, the class ObjObject.

Obj class >> createObjClass
"self bootstrap"

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
objClass

addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

objClass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass withArguments:#()'.

^ objClass

To make the method createObjClass working we should implement the method it calls. Imple-
ment then:

• the primitive objClassStructure that creates the ObjClass class by invoking the newmes-
sage to the class ObjClass. Note that during this method the ObjClass symbol refers to two
different entities because the new class that is created using the old one is declared in the
class dictionary with the same name.

Your job.

Make sure that you read and execute the test method: testCreateObjClassStructure. Now im-
plement the primitive createObjClass that starts as follow:

Obj class >> createObjClass

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
...
^ objClass

• the objMethod isClass that returns true.

• the objMethod isMetaclass that returns true.

objClass
addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

objClass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass withArguments:#()'.
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• the primitive defineInitializeMethodIn: anObjClass that adds the objMethod ini-
tialize to the objClass passed as argument. The objMethod initialize takes the receiver
(an objClass) and an initargs-list and initializesthe receiver according to the specification
given by the initargs-list. In particular, it should be initialized as any other object, then it
should compute its instance variable (i.e., inherited instance variables are computed), the
keywords are also computed, the method dictionary should be defined and the class is then
declared as an existing one. We provide the following template to help you.

Obj class>>defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:

'objself super: #initialize withArguments: {initArray} from:
superClassOfClassDefiningTheMethod.

objself objIVs: (objself
computeNewIVFrom:

(Obj giveClassNamed: objself objSuperclassId) objIVs
with: objself objIVs).

objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.
objself'

Obj class >> defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:

'objself super: #initialize withArguments: {initArray} from:
superClassOfClassDefiningTheMethod.

objself objIVs: (objself
computeNewIVFrom: (Obj giveClassNamed: objself objSuperclassId) objIVs
with: objself objIVs).

objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.
objself'

Your job.

Make sure that you execute the test method: testCreateObjClassMessage.

Note the following points:

• The locally specified instance variables now are just the instance variables that describe a
class. The instance variable class is inherited from ObjObject.

• The initializemethod now does a super send to invoke the initialization performed by
ObjObject.

Now that ObjVLisp is created and we can start to program some classes. Implement the class Obj-
Point and ObjColoredPoint. Here is a possible implementation.

2.26 First User Classes: ObjPoint

You can choose to implement it at the class level of the class Obj or even better in class named Ob-
jPointTest.
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2.27 First User Classes: ObjColoredPoint

Pay attention that your scenario covers the following aspects:

• First just create the class ObjPoint.

• Create an instance of the class ObjPoint.

• Send some messages defined in ObjObject to this instance.

Define the class ObjPoint so that we can create points as below (create a Pharo method to define
it).

ObjClass send: #new
withArguments: #((#name: #ObjPoint #iv: #(#x y) #superclass: #ObjObject)).

aPoint := pointClass send: #new withArguments: #((#x: 24 #y: 6)).
aPoint send: #getIV withArguments: #(#x).
aPoint send: #setIV withArguments: #(#x 25).
aPoint send: #getIV withArguments: #(#x).

Then add some functionality to the class ObjPoint like the methods x, x:, display which prints
the receiver.

Obj ObjPoint
addUnaryMethod: #givex
withBody: 'objself valueOfInstanceVariable: #x '.

Obj ObjPoint
addUnaryMethod: #display
withBody:
'Transcript cr;

show: ''aPoint with x = ''.
Transcript show: (objself send: #givex withArguments: #()) printString;
cr'.

Then test these new functionality.

aPoint send: #x withArguments: #().
aPoint send: #x: withArguments: #(33).
aPoint send: #display withArguments: #().

2.27 First User Classes: ObjColoredPoint

Following the same idea, define the class ObjColored.

Create an instance and send it some basic messages.

aColoredPoint := coloredPointClass
send: #new
withArguments: #((#x: 24 #y: 6 #color: #blue)).

aColoredPoint send: #getIV withArguments: #(#x).
aColoredPoint send: #setIV withArguments: #(#x 25).
aColoredPoint send: #getIV withArguments: #(#x).
aColoredPoint send: #getIV withArguments: #(#color).

Your job.

Define some functionality and invoke them: the method color, implement the method display so
that it invokes the superclass and adds some information related to the color. Here is an example:

coloredPointClass addUnaryMethod: #display
withBody:

'objself super: #display withArguments: #() from:
superClassOfClassDefiningTheMethod.
Transcript cr;
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show: '' with Color = ''.
Transcript show: (objself send: #giveColor withArguments: #()) printString; cr'.

aColoredPoint send: #x withArguments: #().
aColoredPoint send: #color withArguments: #().
aColoredPoint send: #display withArguments: #()

2.28 A First User Metaclass: ObjAbstract

Now implement the metaclass ObjAbstract that defines instances (classes) that are abstract i.e.,
that cannot create instances. This class should raise an error when it executes the newmessage.

Then the following shows you a possible use of this metaclass.

ObjAbstractClass
send: #new
withArguments: #(#(#name: #ObjAbstractPoint

#iv: #()
#superclass: #ObjPoint)).

ObjAbstractPoint send: #new
withArguments: #(#(#x: 24 #y: 6)) "should raise an error"

You should redefine the newmethod. Note that the ObjAbstractClass is an instance of ObjClass
because this is a class and inherits from it because this is a metaclass.

2.29 New features that you could implement

You can implement some simple features:

• define a metaclass that automatically defines accessors for the specified instances variables.

• avoid that we can change the selector and the arguments when calling a super send.

Shared Variables

Note that contrary to the proposition made in the 6th postulate of the original ObjVLisp model,
class instance variables are not equivalent of shared variables. According to the 6th postulate, a
shared variable will be stored into the instance representing the class and not in an instance vari-
able of the class representing the shared variables. For example if a workstation has a shared vari-
able named domain. But domain should not be an extra instance variable of the class of Worksta-
tion. Indeed domain has nothing to do with class description.

The correct solution is that domain is a value hold into the list of the shared variable of the class
Workstation. This means that a class has an extra information to describe it: an instance variable
sharedVariable holding pairs. So we should be able to write

Obj Workstation getIV: #sharedVariable
or
Obj Workstation sharedVariableValue: #domain

and get
#((domain 'inria.fr'))

introduce shared variables: add a new instance variable in the class ObjClass to hold a dictio-
nary of shared variable bindings (a symbol and a value) that can be queried using specific methods:
sharedVariableValue:, sharedVariableValue:put:.

42



CHA P T E R3
Selected definitions

Smith was the first to introduce reflection in a programming language with 3Lisp [Smi84]. He de-
fines reflection as:

• An entity’s integral ability to represent, operate on, and otherwise deal with itself in the
same way that it represents, operates on and deals with its primary subject matter.

In the context of meta-object protocols, Bobrow [BGW93]refines the definition as follows:

• Reflection is the ability of a program to manipulate as data something representing the state
of the program during its own execution. There are two aspects of such manipulation: intro-
spection and intercession (...) Both aspects require a mechanism for encoding execution state
as data; providing such an encoding is called reification.

Maes proposed some definitions for reflexive programming [Mae87]:

• A computational system is something that reasons about and acts upon some part of the world,
called the domain of the system.

• A computational system may also be causally connected to its domain. This means that the
system and its domain are linked in such a way that if one of the two changes, this leads to
an effect upon the other.

• A meta-system is a computational system that has as its domain another computational sys-
tem, called its object-system. (...) A meta-system has a representation of its object-system
in its data. Its program specifies meta-computation about the object-system and is therefore
called a meta-program.

• Reflection is the process of reasoning about and/or acting upon oneself.

• A reflective system is a causally connected meta-system that has as object-system itself. The
data of a reflective system contain, besides the representation of some part of the external
world, also a causally connected representation of itself, called self-representation of the sys-
tem. [...] When a system is reasoning or acting upon itself, we speak of reflective computation.

• A language with a reflective architecture is a language in which all systems have access to a
causally connected representation of themselves.

• A programming environment has a meta-level architecture if it has an architecture which sup-
ports meta-computation, without supporting reflective computation.

• The meta-object of an object X represents the explicit information about X (e.g. about its be-
havior and its implementation). The object X itself groups the information about the entity
of domain it represents.
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