
Smacc: a Compiler-Compiler

John Brant, Jason Lecerf, Thierry Goubier, Stéphane Ducasse

The Pharo Booklet Collection

edited by S. Ducasse

May 1, 2017

master@7a20b0d*

Copyright 2015 by John Brant, Jason Lecerf, Thierry Goubier, Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 About this booklet 1

1.1 Contents . 1

1.2 Obtaining SmaCC . 1

1.3 Basics . 2

2 A first SmaCC tutorial 3

2.1 Opening the tools . 3

2.2 First the scanner . 4

2.3 Second the calculator grammar . 5

2.4 Compile the Scanner and the Parser . 6

2.5 Testing our parser . 7

2.6 Defining actions . 8

2.7 Named expressions . 8

2.8 Extending the language . 9

2.9 Handling priority . 9

2.10 Handling priority with directives . 10

3 SmaCC Scanner 13

3.1 Regular Expression Syntax . 13

3.2 Overlapping Tokens . 15

3.3 Matching Methods . 15

3.4 Unreferenced Tokens . 16

3.5 Unicode Characters . 16

4 SmaCC Parser 17

4.1 Production Rules . 17

4.2 Named Symbols . 18

4.3 Error Recovery . 18

5 SmaCC Directives 21

5.1 Ambiguous Grammars and Precedence . 21

5.2 Start Symbols . 22

5.3 Id Methods . 23

5.4 Case Insensitive Scanning . 23

i

Contents

5.5 GLR Parsing . 23

5.6 AST Directives . 24

6 SmaCC Abstract Syntax Trees 25

6.1 Restarting . 25

6.2 Building nodes . 26

6.3 Variables and unnamed entities . 27

6.4 Unnamed symbols . 28

6.5 Generating the AST . 28

6.6 AST comparison . 29

6.7 Extending the visitor . 31

7 SmaCC Transformations 33

7.1 Transforming . 33

7.2 Pattern matching expressions . 34

7.3 Example . 35

7.4 Parametrizing transformations . 35

8 Grammar idiomatic patterns 37

8.1 Managing List . 37

8.2 Expressing optional repetition . 38

9 Conclusion 39

10 Vocabulary 41

10.1 Reference example . 41

10.2 Grammar structure . 42

ii

Illustrations

2-1 SmaCC GUI Tool: The place to define the scanner and parser. 4

2-2 First grammar: the Scanner part followed by the Parser part. 6

2-3 Explorer on 3 + 4 . 7

2-4 Inspector on 3 + 4 . 7

iii

CHA P T E R 1
About this booklet

This booklet describes SmaCC the Smalltalk Compiler-Compiler developed by
John Brant.

1.1 Contents

It contains:

• A tutorial originally written by John Brant and Don Roberts (SmaCC1)
and adapted to Pharo.

• Syntax to declare Syntax trees.

• Details about the directives.

• Scanner and Parser details.

• Support for transformations.

• Idioms: Often we have recurring patterns and it is nice to document
them.

SmaCC was ported by Thierry Goubier to Pharo who is maintaining actively
the Smacc Pharo port. SmaCC is used in production systems and support
for example the automatic conversion from Delphi to C# and other large
projects.

1.2 Obtaining SmaCC

If you haven’t already done so, you will first need to load Smacc.

1http://www.refactory.com/Software/SmaCC

1

http://www.refactory.com/Software/SmaCC
http://www.refactory.com/Software/SmaCC

About this booklet

Metacello new
baseline: 'SmaCC';
repository: 'github://ThierryGoubier/SmaCC';
load

Note that there is another version that appeared recently and that is now
part of Moose http://moosetechnology.com the difference is that there are
different tools to load the parsers/scanner and in addition there is a special
debugger. This debugger may be integrated in the future with the version
used in this book.

1.3 Basics

Scanning takes an input stream of characters and converts that into a stream
of tokens. The tokens are then passed on to the parsing phase. Parsing con-
verts the stream of tokens provided by the scanner into some object.

2

http://moosetechnology.com

CHA P T E R2
A first SmaCC tutorial

This is a walk-through tutorial to demonstrate some features of SmaCC, the
Smalltalk Compiler Compiler. This tutorial develop a simple calculator. This
tutorial was originally developed by Don Roberts and John Brant and im-
proved by T. Goubier, S. Ducasse and J. Lecerf.

2.1 Opening the tools

Once you have loaded the code, you need to open the SmaCC Parser Genera-
tor (Figure 2-1). In Pharo, it is in the Tools submenu of the main menu.

Our first calculator is going to be relatively simple. It is going to take two
numbers and add them together. To get started

• Edit the definition the pane below the compile LR(1) buttons.

• Once you are done:

– Click on the Scanner class and type ExpressionScanner.

– Click on the Parser class and type ExpressionParser.

• press either Compiler LR(1) or Compiled LALR(1) buttons.

Now you are ready to edit first your scanner and parser. Not that you edit
everything in one file (edited using the tools) and once compiled the tools
will generate two classes and fill them with adequate information as shown
as Figure 2-2.

3

A first SmaCC tutorial

Figure 2-1 SmaCC GUI Tool: The place to define the scanner and parser.

2.2 First the scanner

To start things off, we have to tell the scanner how to recognize a number.
It starts with one or more digits, possibly followed by an decimal point with
zero or more digits after it. The scanner definition for this token (called a
token specification) is:

<number> : [0-9]+ (\. [0-9]*) ? ;

Let’s go over each part:

<number> Names the token identified by the token specification. The name
inside the <> must be a legal Pharo variable name.

: Separates the name of the token from the token’s definition.

[0-9] Matches any single character in the range '0' to '9' (a digit). We
could also use \d or <isDigit> as these also match digits.

+ Matches the previous expression one or more times. In this case, we are
matching one or more digits.

(...) Groups subexpressions. In this case we are grouping the decimal
point and the numbers following the decimal point.

\. Matches the ’.’ character (. has a special meaning in regular expressions,
quotes it).

4

2.3 Second the calculator grammar

* Matches the previous expression zero or more times.

? Matches the previous expression zero or one time (i.e., it is optional).

; Terminates a token specification.

Handling whitespaces

We don’t want to have to worry about whitespace in our language, so we
need to define what a whitespace is and to ignore it. To do this, enter the
following token specification on the next line:

<whitespace> : \s+;

\smatches any whitespace character (space, tab, linefeed, etc.). So how do
we tell the scanner to ignore it? If you look in the SmaCCScanner class (the
superclass of all the scanners created by SmaCC), you will find a method
named whitespace. If a scanner understands a method that has the same
name as a token name, that method will get called whenever the scanner
matches that kind of token. As you can see, the SmaCCScanner>>whitespace
method eats whitespace.

SmaCCScanner >> whitespace
"By default, eat the whitespace"

self resetScanner.
^ self scanForToken

SmaCCScanner also defines a commentmethod that behaves similarly. How-
ever, the SmaCCScanner>>commentmethod also stores the interval in the
source where the comment occurred in the comments instance variable.

SmaCCScanner >> comment
comments add: (Array with: start + 1 with: matchEnd).
^ self whitespace

The only other token that will appear in our system would be the + token
for addition. However, since this is token is always the same, we can enter it
directly in our production rules.

To do SD: I do not get the previous sentence.

2.3 Second the calculator grammar

Speaking of our grammar, let’s go ahead and define it. Enter the following
specification below your two previous rules in the editor pane as shown in
Figure 2-2.

Expression
: Expression "+" Number

5

A first SmaCC tutorial

Figure 2-2 First grammar: the Scanner part followed by the Parser part.

| Number
;

Number
: <number>
;

This basically says that an expression is either a number or an expression
added to a number. You should now have something that looks like Figure
2-2.

2.4 Compile the Scanner and the Parser

We should be able to compile a parser now. First, we need to specify the
scanner and parser classes to create. These are entered from the ... buttons
for scanner class and parser class. Enter CalculatorScanner and Calcula-
torParser respectively. Once the class names are entered, we are ready to
compile the parser. Press Compile LR(1) or Compile LALR(1). This will create
new Pharo classes for the CalculatorScanner and CalculatorParser and
compile several methods in those classes. All methods that SmaCC compiles
will go into a ”generated” method protocol. You should not change those
methods or add new methods to the ”generated” method protocols since
they are replaced or deleted each time you compile.

6

2.5 Testing our parser

Figure 2-3 Explorer on 3 + 4

Figure 2-4 Inspector on 3 + 4

Whenever SmaCC creates new classes, they are compiled in the package (or
package tag) named on the Package entry box. You may wish to select a dif-
ferent package by pressing ’...’.

2.5 Testing our parser

Now we are ready to test our parser. Go to the ”test” pane, enter 3 + 4, and
press ”Parse”; you will see that the parser correctly parses it. If you press
”Parse and explore” or ”Parse and inspect” you will see an explorer (Figure
2-3) (respectively an inspector (Figure 2-4)) on an OrderedCollection that
contains the parsed tokens. This is because we haven’t specified what the
parser is supposed to do when it parses. You can also enter incorrect items.
For example, try to parse 3 + + 4 or 3 + a. An error message should appear
in the text.

If you are interested in the generated parser, you may wish to look at the
output from compiling the parser in the Symbols or Item Sets tab.

• The Symbols tab lists all of the terminal and non-terminal symbols that
were used in the parser. The number besides each is the internal id
used by the parser.

• The Item Sets tab lists the LR item sets that were used in the parser.

7

A first SmaCC tutorial

These are printed in a format that is similar to the format used by
many text books.

• The Messages tab is used to display any warnings generated while the
parser was compiled. The most common warning is for ambiguous ac-
tions.

2.6 Defining actions

Now we need to define the actions that need to happen when we parse our
expressions. Currently, our parser is just validating that the expression is a
bunch of numbers added together. Generally, you will create some structure
that represents what you’ve parsed (e.g., a parse tree). However, in this case,
we are not concerned about the structure, but we are concerned about the
result (the value of the expression). For our example, you need to modify the
grammar definition to be:

Expression
: Expression "+" Number {'1' + '3'}
| Number {'1'}
;

Number
: <number> {'1' value asNumber}
;

The text between the braces is Pharo code that gets evaluated when the rule
is applied. Strings with a number get replaced with the corresponding ex-
pression in the production.

• In the first Expression rule, the '1' will get replaced by the object
that matches Expression and the '3' gets replaced by the object that
matches Number.

• The second item in the rule is the "+" token. Since we already know
what it is, it is not interesting.

Compile the new parser. Now when you do a ’Parse and inspect’ from the test
pane containing 3 + 4, you should see the result: 7.

2.7 Named expressions

One problem with the previous example is that if you need to change a rule
then you may also need to change the code for that rule. For example, sup-
pose you inserted a new token at the beginning of a rule, then you would
need to change all of your references in the Pharo code. We can alleviate this
problem by using named expressions. After each part of a rule, we can spec-
ify its name. Names are specified with single quotes and must be legal Pharo
variable names. Doing this for our grammar we get:

8

2.8 Extending the language

Expression
: Expression 'expression' "+" Number 'number' {expression + number}
| Number 'number' {number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

While this will result in the same language being parsed, it makes it easier to
maintain your parsers.

2.8 Extending the language

Let’s extend our language to add subtraction. Here’s the new grammar:

Expression
: Expression 'expression' "+" Number 'number' {expression + number}
| Expression 'expression' "-" Number 'number' {expression - number}
| Number 'number' {number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

After you’ve compiled this, '3 + 4 - 2' should return '5'. Next, let’s add
multiplication and division:

Expression
: Expression 'expression' "+" Number 'number' {expression + number}
| Expression 'expression' "-" Number 'number' {expression - number}
| Expression 'expression' "*" Number 'number' {expression * number}
| Expression 'expression' "/" Number 'number' {expression / number}
| Number 'number' {number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

2.9 Handling priority

Here we run into a problem. If you evaluate '2 + 3 * 4' you end up with
20. The problem is that in standard mathematics, multiplication has a higher
precedence than addition. Our grammar evaluates strictly left-to-right. The
standard solution for this problem is to define additional non-terminals to
force the sequence of evaluation. Our grammar with that solution would look
like:

Expression
: Term 'term' {term}

9

A first SmaCC tutorial

| Expression 'expression' "+" Term 'term' {expression + term}
| Expression 'expression' "-" Term 'term' {expression - term}
;

Term
: Number 'number' {number}
| Term 'term' "*" Number 'number' {term * number}
| Term 'term' "/" Number 'number' {term / number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

If you compile this grammar, you will see that '2 + 3 * 4' evaluates to
'14' like we would expect.

2.10 Handling priority with directives

Now, as you can imagine, this gets pretty complicated as the number of prece-
dence rules increases (e.g., C). We can use ambiguous grammars and prece-
dence rules to simplify this situation. Here is the same grammar using prece-
dence to enforce our evaluation order:

%left "+" "-";
%left "*" "/";

Expression
: Expression 'exp1' "+" Expression 'exp2' {exp1 + exp2}
| Expression 'exp1' "-" Expression 'exp2' {exp1 - exp2}
| Expression 'exp1' "*" Expression 'exp2' {exp1 * exp2}
| Expression 'exp1' "/" Expression 'exp2' {exp1 / exp2}
| Number 'number' {number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

Notice that we changed the grammar so that there are Expressions on both
sides of the operator. The two lines that we added to the top of the grammar
mean that + and - are evaluated left-to-right and have the same precedence,
which is lower than * and /. Likewise, the second line means that * and /
have equal precedence. Grammars in this form are usually much more in-
tuitive, especially in cases with many precedence levels. Just as an example,
let’s add exponentiation and parentheses. Here is our final grammar:

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;
%left "+" "-";
%left "*" "/";
%right "^";

10

2.10 Handling priority with directives

Expression
: Expression 'exp1' "+" Expression 'exp2' {exp1 + exp2}
| Expression 'exp1' "-" Expression 'exp2' {exp1 - exp2}
| Expression 'exp1' "*" Expression 'exp2' {exp1 * exp2}
| Expression 'exp1' "/" Expression 'exp2' {exp1 / exp2}
| Expression 'exp1' "^" Expression 'exp2' {exp1 raisedTo: exp2}
| "(" Expression 'expression' ")" {expression}
| Number 'number' {number}
;

Number
: <number> 'numberToken' {numberToken value asNumber}
;

Once you have compiled the grammar, you will be able to evaluate 3 + 4
* 5 ^ 2 ^ 2 to get 2503. Since the exponent operator is right associative,
this expression is evaluated like 3 + (4 * (5 ^ (2 ^ 2))). We can also
evaluate expressions with parentheses. For example, evaluating (3 + 4) *
(5 - 2) ^ 3 results in 189.

If you would like to extend the calculator to create abstract syntax trees, you
can keep reading. If you want more information on other SmaCC options,
you can visit the directives, scanner, and parser sections.

11

CHA P T E R3
SmaCC Scanner

Scanning takes an input stream of characters and converts that into a stream
of tokens. The tokens are then passed on to the parsing phase.

The scanner is specified by a collection of token specifications. Each token is
specified by:

TokenName : RegularExpression ;

TokenName is a valid variable name that is surrounded by <>. For example,
<token> is a valid TokenName, but <token name> is not since token name
isn’t a valid variable name. The RegularExpression is a regular expression
that matches a token. It should match one or more characters in the input
stream. The colon character, :, is used to separate the TokenName and the
RegularExpression, and the semicolon character, ;, is used to terminate
the token specification.

3.1 Regular Expression Syntax

While the rules are specified as regular expressions, there are many different
syntaxes for regular expressions. We choose a relatively simple syntax that
is specified below. If you wish to have a more rich syntax, you can modify the
scanner’s parser: SmaCCDefinitionScanner and SmaCCDefinitionParser.
These classes were created using SmaCC.

\character Matches a special character. The character immediately following
the backslash is matched exactly, unless it is a letter. Backslash-letter
combinations have other meanings and are specified below.

\cLetter Matches a control character. Control characters are the first 26

13

SmaCC Scanner

characters (e.g., \cA equals Character value: 0). The letter that fol-
lows the \cmust be an uppercase letter.

\d Matches a digit, 0-9.

\D Matches anything that is not a digit.

\f Matches a form-feed character, Character value: 12.

\n Matches a newline character, Character value: 10.

\r Matches a carriage return character, Character value: 13.

\s Matches any whitespace character, [\f\n\r\t\v].

\S Matches any non-whitespace character.

\t Matches a tab, Character value: 9.

\v Matches a vertical tab, Character value: 11.

\w Matches any letter, number or underscore, [A-Za-z0-9_].

\W Matches anything that is not a letter, number or underscore.

\xHexNumber Matches a character specified by the hex number following
the \x. The hex number must be at least one character long and no
more than four characters for Unicode characters and two charac-
ters for non-Unicode characters. For example, \x20matches the space
character (Character value: 16r20), and \x1FFFmatches Charac-
ter value: 16r1FFF.

<token> Copies the definition of <token> into the current regular expression.
For example, if we have <hexdigit> : \d | [A-F] ;, we can use
<hexdigit> in a later rule: <hexnumber> : <hexdigit> + ;.

<isMethod> Copies the characters where Character>>isMethod returns true
into the current regular expression. For example, instead of using \d,
we could use <isDigit> since Character>>isDigit returns true for
digits.

[characters] Matches one of the characters inside the []. This is a shortcut for
the | operator. In addition to single characters, you can also specify
character ranges with the - character. For example, [a-z]matches
any lower case letter.

[^characters] Matches any character not listed in the characters block. [^a]
matches anything except for a.

comment Creates a comment that is ignored by SmaCC. Everything from
the # to the end of the line is ignored.

exp1 | exp2 Matches either exp1 or exp2.

exp1 exp2 Matches exp1 followed by exp2. \d \dmatches two digits.

14

3.2 Overlapping Tokens

exp* Matches exp zero or more times. 0*matches '' and 000.

exp? Matches exp zero or one time. 0? matches only '' or 0.

exp+ Matches exp one or more times. 0+matches 0 and 000, but not ''.

exp{min,max} Matches exp at least min times but no more than max times.
0{1,2}matches only 0 or 00. It does not match '' or 000.

(exp) Groups exp for precedence. For example, (a b)*matches ababab.
Without the parentheses, a b * would match abbbb but not ababab.

Since there are multiple ways to combine expressions, we need precedence
rules for their combination. The or operator, |, has the lowest precedence
and the *, ?, +, and {,} operators have the highest precedence. For exam-
ple, a | b c *matches a or bcccc, but not accc or bcbcbc. If you wish to
match a or b followed by any number of c’s, you need to use (a | b) c *.

3.2 Overlapping Tokens

SmaCC can handle overlapping tokens without any problems. For example,
the following is a legal SmaCC scanner definition:

<variable> : [a-zA-Z] \w* ;
<any_character> : . ;

This definition will match a variable or a single character. A variable can also
be a single character [a-zA-Z], so the two tokens overlap. SmaCC handles
overlapping tokens by preferring the longest matching token. If multiple to-
kens match the longest possible token, then the parser uses the first token
specified by the grammar unless you override the SmaCCParser>>tryAllTo-
kensmethod. For example, an a could be a <variable> or an <any_charac-
ter> token, but since <variable> is specified first, SmaCC will use it.

3.3 Matching Methods

If your scanner has a method name that matches the name of the token,
(e.g. method whitespace), that method will get called upon a match of that
type. The SmaCCScanner superclass already has a default implementation
of whitespace and comment. These methods ignore those tokens by default.
If you want to store comments, then you should override the SmaCCScan-
ner»comment method.

Matching methods can also be used to handle overlapping token classes. For
example, in the C grammar, a type definition is the same as an identifier. The
only way that they can be disambiguated is by looking up the name in the
type table. In our example C parser, we have an IDENTIFIER method that is
used to determine whether the token is really an IDENTIFIER or whether it is
a TYPE_NAME.

15

SmaCC Scanner

3.4 Unreferenced Tokens

If a token is not referenced from a grammar specification, it will not be in-
cluded in the generated scanner, unless the token’s name is also a name of
a method (see previous section). This, coupled with the ability to do substi-
tutions, allows you to have the equivalent of macros within your scanner
specification. However, be aware that if you are simply trying to generate a
scanner, you will have to make sure that you create a dummy parser specifi-
cation that references all of the tokens that you want in the final scanner.

3.5 Unicode Characters

SmaCC compiles the scanner into a bunch of conditional tests on characters.
Normally, it assumes that characters have values between 0 and 255, and it
can make some optimizations based on this fact. With the ”Allow Unicode
Characters” option checked, it will assume that characters have values be-
tween 0 and 65535.

16

CHA P T E R4
SmaCC Parser

Parsing converts the stream of tokens provided by the scanner into some ob-
ject. Normally, this object will be a parse tree, but it does not have to be a
parse tree. For example, the SmaCC tutorial shows a calculator. This calcula-
tor does not produce a parse tree; it produces the result, a number.

4.1 Production Rules

The production rules contains the grammar for the parser. The first produc-
tion rule is considered to be the starting rule for the parser. Each produc-
tion rule consists of a non-terminal symbol name followed by a ”:” separator
which is followed by a list of possible productions separated by vertical bar,
”|”, and finally terminated by a semicolon, ”;”.

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
;

Number
: <number> {{Number}}
;

Each production consists of a sequence of non-terminal symbols, tokens, or
keywords followed by some optional Smalltalk code enclosed in curly brack-
ets, {} or a AST node definition enclosed in two curly brackets, {{}}. Non-

17

SmaCC Parser

terminal symbols are valid Smalltalk variable names and must be defined
somewhere in the parser definition. Forward references are valid. Tokens
are enclosed in angle brackets as they are defined in the scanner (e.g., <to-
ken>) and keywords are enclosed in double-quotes (e.g., ”then”). Keywords
that contain double-quotes need to have two double-quotes per each double-
quote in the keyword. For example, if you need a keyword for one double-
quote character, you would need to enter ”””” (four double-quote charac-
ters).

The Smalltalk code is evaluated whenever that production is matched. If the
code is a zero or a one argument symbol, then that method is performed.
For a one argument symbol, the argument is an OrderedCollection that con-
tains one element for each item in the production. If the code isn’t a zero or
one argument symbol, then the code is executed and whatever is returned
by the code is the result of the production. If no Smalltalk code is specified,
then the default action is to execute the #reduceFor: method (unless you are
producing an AST parser). This method converts all items into an Ordered-
Collection. If one of the items is another OrderedCollection, then all of its
elements are added to the new collection.

Inside the Smalltalk code you can refer to the values of each production
item by using literal strings. The literal string, ’1’, refers the to value of the
first production item. The values for tokens and keywords will be SmaCC-
Token objects. The value for all non-terminal symbols will be whatever the
Smalltalk code evaluates to for that non-terminal symbol.

4.2 Named Symbols

When entering the Smalltalk code, you can get the value for a symbol by us-
ing the literal strings (e.g., ’2’). However, this creates difficulties when modi-
fying a grammar. If you insert some symbol at the beginning of a production,
then you will need to modify your Smalltalk code changing all literal string
numbers. Instead you can name each symbol in the production and then re-
fer to the name in the Smalltalk code. To name a symbol (non-terminal, to-
ken, or keyword), you need to add a quoted variable name after the symbol
in the grammar. For example, ”MySymbol : Expression ’expr’ ”+” <number>
’num’ {expr + num} ;” creates two named variables. One for the non-terminal
Expression and one for the <number> token. These variables are then used in
the Smalltalk code.

4.3 Error Recovery

Normally, when the parser encounters an error, it raises the SmaCCParser-
Error exception and parsing is immediately stopped. However, there are
times when you may wish to try to parse more of the input. For example, if

18

4.3 Error Recovery

you are highlighting code, you do not want to stop highlighting at the first
syntax error. Instead you may wish to attempt to recover after the statement
separator – the period ”.”. SmaCC uses the error symbol to specify where er-
ror recovery should be attempted. For example, we may have the following
rule to specify a list of Smalltalk statements:

Statements : Expression | Statements "." Expression ;

If we wish to attempt recovery from a syntax error when we encounter a
period, we can change our rule to be:

Statements : Expression | Statements "." Expression | error "."
Expression ;

While the error recovery allows you to proceed parsing after a syntax error,
it will not allow you to return a parse tree from the input. Once the input has
been parsed with errors, it will raise a non-resumable SmaCCParserError.

19

CHA P T E R5
SmaCC Directives

SmaCC has several directives that can change how the scanner and parser is
generated. Each directive begins with a % character and the directive key-
word. Depending on the directive, there may be a set of arguments. Finally,
the directive is terminated with a semicolon character, ; as shown below:

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;
%ignore_variables leftParenToken rightParenToken;

5.1 Ambiguous Grammars and Precedence

SmaCC can handle ambiguous grammars. Given an ambiguous grammar,
SmaCC will produce some parser. However, it may not parse correctly. For
an LR parser, there are two basic types of ambiguities, reduce/reduce con-
flicts and shift/reduce conflicts. Reduce/reduce conflicts are bad. SmaCC has
no directives to handle them and just picks one of the choices. These con-
flicts normally require a rewrite of your grammar or switch to GLR parsing.

On the other hand, shift/reduce conflicts can be handled by directives. When
SmaCC encounters a shift/reduce conflict it will perform the shift action by
default. However, you can control this action with the %left, %right, and
%nonassoc directives. If a token has been declared in a %left directive, it
means that the token is left-associative. Therefore, the parser will perform
a reduce operation. However, if it has been declared as right-associative, it

21

SmaCC Directives

will perform a shift operation. A token defined as %nonassoc will produce
an error if that is encountered during parsing. For example, you may want
to specify that the equal operator, ”=”, is non-associative, so a = b = c is
not parsed as a valid expression. All three directives are followed by a list of
tokens.

Additionally, the %left, %right, and %nonassoc directives allow precedence
to be specified. The order of the directives specifies the precedence of the
tokens. The higher precedence tokens appear on the higher line numbers.
For example, the following directive section gives the precedence for the
simple calculator in our tutorial:

%left "+" "-";
%left "*" "/";
%right "^";

The + and - symbols appear on the first line and have the lowest precedence.
They are also left-associative so 1 + 2 +3 will be evaluated as (1 + 2) + 3.
On the next line are the * and / symbols. Since they appear on a higher line
number, they have higher precedence than the + and -. Finally, on line three
we have the ”^” symbol. It has the highest precedence. Combining all the
rules allows us to parse 1 + 2 * 3 / 4 ^ 2 ^ 3 as 1 + ((2 * 3) / (4 ^
(2 ^ 3))).

5.2 Start Symbols

By default, the left-hand side of the first grammar rule is the start symbol.
If you want to multiple start symbols, then you can specify them by using
the %start directive followed by the nonterminals that are additional start
symbols. This is useful for creating two parsers with two grammars that are
similar but slightly different. For example, consider a Pharo parser. You can
parse methods, and you can parse expressions. These are two different op-
erations, but have very similar grammars. Instead of creating two different
parsers for parsing methods and expressions, we can specify one grammar
that parses methods and also specify another starting position for parsing
expressions.

The StParser in the SmaCC Example Parsers package has an example of this.
The StParser class>>parseMethod: uses the startingStateForMethod
position to parse methods and the StParser class>>parseExpression:
uses the startingStateForSequenceNode position to parse expressions.

For example if you add the following to an hypothetical grammar

%start file expression statement declaration;

SmaCC will generate the following class methods on the parseur: start-
ingStateForfile, startingStateForexpression, startingStateForstate-
ment and startingStateFordeclaration.

22

5.3 Id Methods

Then you can parse a subpart as follows:

YourParser >> parseStatement: aString
"Parse an statement."

^ (self on: (ReadStream on: aString))
setStartingState: self startingStateForstatement;
parse

This is useful when you incrementally build your grammar and want to test
it at different points.

5.3 Id Methods

Internally, the various token types are represented as integers. However,
there are times that you need to reference the various token types. For ex-
ample, in the CScanner and CParser classes, the TYPE_NAME token is identical
to the IDENTIFIER token. The IDENTIFIER matching method does a lookup in
the type table and if it finds a type definition with the same name as the cur-
rent IDENTIFIER, it returns the TYPE_NAME token type. To determine what
integer this is, the parser was created with an %id directive for <IDENTIFIER>
and <TYPE_NAME>. This generates the IDENTIFIERId and TYPE_NAMEId
methods on the scanner. These methods simply return the number repre-
senting that token type. See the C sample scanner and parser for an example
of how this is used.

5.4 Case Insensitive Scanning

You can specify that the scanner should ignore case differences by using the
%ignorecase; directive. If you have a language that is case insensitive and
has several keywords, this can be a handy feature to have. For example, if
you have THEN as a keyword in a case insensitive language, you would need
to specify a token for then as <then> : [tT] [hH] [eE] [nN] ;. This is
a pain to enter correctly. When the ignorecase directive is used, SmaCC will
automatically convert THEN into [tT][hH][eE][nN].

5.5 GLR Parsing

SmaCC allows you to parse ambiguous grammars using a GLR parser. The
%glr; directive changes the type of parser that SmaCC generates. Instead of
your generated parser being a subclass of SmaCCParser, when you specify
the %glr; directive, your parser will be a subclass of SmaCCGLRParser.

If you parse a string that has multiple representations, SmaCC will throw a
SmaCCAmbiguousResultNotification exception that can be handled by

23

SmaCC Directives

user code. This exception has the potential parses. The value that it is re-
sumed with will be selected as the definitive parse value. If the exception is
not handled, then it will pick one as the definitive parse value.

5.6 AST Directives

There are several directives that are used when creating AST’s.

• The %root directive is used to specify the root class in the AST hierar-
chy. The %root directive has a single argument that is the name that
will be used to create the root class in the AST. This class will be cre-
ated as a subclass of SmaCCParseNode.

• The %prefix and %suffix directives tell SmaCC the prefix and suf-
fix to add to every AST node’s class name. These are automatically
added to every AST node including the %root node. For example, the
following will create a RBProgramNode class that is a subclass of SmaC-
CParseNode and is the root of all AST nodes defined by this parser.

%root Program;
%prefix RB;
%suffix Node;

By default all nodes created by SmaCC will be direct subclass of your %root
class. However, you can specify the hierarchy by using the %hierarchy
directive. The syntax of the %hierarchy is %hierarchy SuperclassName
(SubclassName);. If you have multiple subclasses, you can list all of them
inside the parenthesis separated by whitespace:

%hierarchy Program (Expression Statement);

Two final AST directives deal with the generated classes’ instance variables.

• One directive allows you to add some unused instance variables to your
classes so you can later extend the generated classes to use those vari-
ables. To add an instance variable to your class, you can use the %at-
tributes directive. The first argument to the directive is the class
name, and the second argument is a list of variable names. For exam-
ple, we could add a variable named cachedValue to our Expression
class with the following %attributes Expression (cachedValue);.

• The other instance variable directive is %ignore_variables. When
SmaCC creates the AST nodes it automatically creates appropriate =
and hashmethods. By default, these methods use all variables when
comparing equality. The %ignore_variables directive allows you to
specify certain variables to ignore when comparing. For example, you
may wish to ignore parentheses when you compare expressions. If you
named your (token ’leftParen’ and your) token ’rightParen’, then you
can use %ignore_variables leftParen rightParen;.

24

CHA P T E R6
SmaCC Abstract Syntax Trees

SmaCC can generate abstract syntax trees from an annotated grammar. In
addition to the node classes to represent the trees, SmaCC also generates a
generic visitor for the tree classes. This is handy and boost your productivity
especially since we can decide to change the AST form afterwards and get a
new one in no time.

6.1 Restarting

To create an AST, you need to annotate your grammar. Let’s start with the
grammar of our simple expression parser from the tutorial. Since we want to
build an AST, we’ve removed the code that evaluates the expression.

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";

Expression
: Expression "+" Expression
| Expression "-" Expression
| Expression "*" Expression
| Expression "/" Expression
| Expression "^" Expression
| "(" Expression ")"
| Number
;

Number

25

SmaCC Abstract Syntax Trees

: <number>
;

6.2 Building nodes

Building an AST parser works similarly to the normal parser. Instead of in-
serting Pharo code after each production rule inside braces, {}, we insert the
class name inside of double braces, {{}}. Also, instead of naming a variable
for use in the Pharo code, we name a variable so that it will be included as an
instance variable in the class we are defining.

Let’s start with annotating the grammar for the AST node classes that we
wish to parse. We need to tell SmaCC where the AST node should be created
and the name of the node’s class to create. In our example, we’ll start by cre-
ating three node classes: Expression, Binary, and Number.

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";

Expression
: Expression "+" Expression {{Binary}}
| Expression "-" Expression {{Binary}}
| Expression "*" Expression {{Binary}}
| Expression "/" Expression {{Binary}}
| Expression "^" Expression {{Binary}}
| "(" Expression ")" {{}}
| Number
;

Number
: <number> {{Number}}
;

If you compile this grammar, SmaCC will complain that we need to define a
root node. Since the root hasn’t been defined SmaCC compiles the grammar
as if the {{...}} expressions where not there and generates the same parser
as above.

• Notice that for the parenthesized expression, we are using {{}}. This
is a shortcut for {{Expression}} (the name of our production’s sym-
bol).

• Notice that we didn’t annotate the last production in the Expression
definition. Since it only contains a single item, Number, SmaCC will
pull up its value which in this case will be a Number AST node.

26

6.3 Variables and unnamed entities

6.3 Variables and unnamed entities

Now, let’s add variable names to our rules:

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
;

Number
: <number> {{Number}}
;

The first thing to notice is that we added the %annotate_tokens; directive.
This directive tells SmaCC to automatically create an instance variable for
every unnamed token and keyword in the grammar. An unamed token is a
<> not followed by a variable (defined with 'aVariable') and an unnamed
keyword is delimited by double quotes as in "(".

In our example above, we have

• one unnamed token, <number>, and

• two unnamed keywords, (and).

When SmaCC sees an unnamed token or keyword, it adds a variable that is
named based on the item and appends Token to the name. For example, in
our example above, SmaCC will use

• leftParenToken for (,

• rightParenToken for), and

• numberToken for <number>.

The method SmaCCGrammar class>>tokenNameMap contains the mapping
to convert the keyword characters into valid Pharo variable names. You can
modify this dictionary if you wish to change the default names.

27

SmaCC Abstract Syntax Trees

6.4 Unnamed symbols

Notice that we did not name Expression in the (Expression) production
rule. When you don’t name a symbol in a production, SmaCC tries to figure
out what you want to do. In this case, SmaCC determines that the Expres-
sion symbol produces either a Binary or Number node. Since both of these
are subclasses of the Expression, SmaCC will pull up the value of Expression
and add the parentheses to that node. So, if you parse (3 + 4), you’ll get a
Binary node instead of an Expression node.

6.5 Generating the AST

Now we are ready to generate our AST. We need to add directives that tell
SmaCC our root AST class node and the prefix and suffix of our classes.

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
;

Number
: <number> {{Number}}
;

When you compile this grammar, in addition to the normal parser and scan-
ner classes, SmaCC will create ASTExpressionNode, ASTBinaryNode, and
ASTNumberNode node classes and an ASTExpressionNodeVisitor class that
implements the visitor pattern for the tree classes.

The ASTExpressionNode class will define two instance variables, leftPar-
enTokens and rightParenTokens, that will hold the (and) tokens. Notice
that these variables hold a collection of tokens instead of a single parenthesis
token. SmaCC figured out that each expression node could contain multiple

28

6.6 AST comparison

parentheses and made their variables hold a collection. Also, it pluralized the
leftParentToken variable name to leftParenTokens. You can customize
how it pluralizes names in the SmaCCVariableDefinition class (See plu-
ralNameBlock and pluralNames).

The ASTBinaryNode will be a subclass of ASTExpressionNode and will define
three variables: left, operator, and right.

• The left and right instance variables will hold other ASTExpres-
sionNodes and

• the operator instance variable will hold a token for the operator.

Finally, the ASTNumberNode will be a subclass of ASTExpressionNode and
will define a single instance variable, number, that holds the token for the
number.

Now, if we inspect the result of parsing 3 + 4, we’ll get an Inspector on an
ASTBinaryNode.

6.6 AST comparison

SmaCC also generates the comparison methods for each AST node. Let’s add
function evaluation to our expression grammar to illustrate this point.

<number> : [0-9]+ (\. [0-9]*) ? ;
<name> : [a-zA-Z]\w*;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
| Function
;

Number
: <number> {{Number}}
;

29

SmaCC Abstract Syntax Trees

Function
: <name> "(" 'leftParen' _Arguments ")" 'rightParen' {{}}
;

_Arguments
:
| Arguments
;

Arguments
: Expression 'argument'
| Arguments "," Expression 'argument'
;

Now, if we inspect Add(3, 4), we’ll get something that looks like an AST-
FunctionNode.

In addition to the generating the classes, SmaCC also generates the compar-
ison methods for each AST node. For example, we can compare two parse
nodes: (CalculatorParser parse: '3 + 4') = (CalculatorParser
parse: '3+4'). This returns true as whitespace is ignored. However, if we
compare (CalculatorParser parse: '(3 + 4)') = (CalculatorParser
parse: '3+4'), we get false, since the first expression has parentheses. We
can tell SmaCC to ignore these by adding the %ignore_variables direc-
tive:
<number> : [0-9]+ (\. [0-9]*) ? ;
<name> : [a-zA-Z]\w*;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;
%ignore_variables leftParenToken rightParenToken;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
| Function
;

Number
: <number> {{Number}}
;

30

6.7 Extending the visitor

Function
: <name> "(" 'leftParen' _Arguments ")" 'rightParen' {{}}
;

_Arguments
:
| Arguments
;

Arguments
: Expression 'argument'
| Arguments "," Expression 'argument'
;

Now, we get true when we compare (CalculatorParser parse: '(3 +
4)') = (CalculatorParser parse: '3+4').

6.7 Extending the visitor

Finally, let’s subclass the generated visitor to create a visitor that evaluates
the expressions. Here’s the code for Pharo:

ASTExpressionNodeVisitor subclass: #ASTExpressionEvaluator
instanceVariableNames: 'functions'
classVariableNames: ''
package: 'SmaCC-Tutorial'.

ASTExpressionEvaluator >> functions
^functions
ifNil:

[functions := (Dictionary new)
at: ''Add'' put: [:a :b | a + b];
yourself]' classified: 'private'.

ASTExpressionEvaluator >> visitBinary: aBinary
| left right operation |
left := self acceptNode: aBinary left.
right := self acceptNode: aBinary right.
operation := aBinary operator value.
operation = ''^'' ifTrue: [^left ** right].
^left perform: operation asSymbol with: right' classified:

'visiting'.

ASTExpressionEvaluator >> visitFunction: aFunction
| function arguments |
function := self functions at: aFunction nameToken value

ifAbsent:
[self error: ''Function '' ,

aFunction nameToken value ,
'' is not defined''].

arguments := aFunction arguments collect: [:each | self
acceptNode: each].

31

SmaCC Abstract Syntax Trees

^function valueWithArguments: arguments asArray' classified:
'visiting'.

ASTExpressionEvaluator >> visitNumber: aNumber
^ aNumber numberToken value asNumber' classified: 'visiting'.

Now we can evaluate ASTExpressionEvaluator new accept: (Calcula-
torParser parse: 'Add(3,4) * 12 / 2 ^ (3 - 1) + 10') and get 31.

32

CHA P T E R7
SmaCC Transformations

Once you have generated your AST using SmaCC, you can use SmaCC’s built
in transformation support.

7.1 Transforming

Let’s add support for transforming our simple expressions generated from
our AST example.

The first thing we need to do is to extend our grammar by adding two lines.

• The first line we need to add is the definition of a pattern for our lan-
guage. When your grammar defines the <patternToken>, SmaCC uses
this as the definition of a pattern for your language. For most lan-
guages, patterns are simply anything delimited by ` characters (e.g.,
`pattern`).

• The other line we need to add is the line to tell SmaCC to generate a
GLR parser (%glr;). This allows SmaCC to parse all possible represen-
tations of a pattern expression. Here is our grammar with those two
additional lines:

<number> : [0-9]+ (\. [0-9]*) ? ;
<name> : [a-zA-Z]\w*;
<whitespace> : \s+;

+ <patternToken> : \` [^\`]* \` ;
+ %glr;

%left "+" "-";
%left "*" "/";
%right "^";

33

SmaCC Transformations

%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;
%ignore_variables leftParenToken rightParenToken;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
| Function;

Number : <number> {{Number}};
Function
: <name> "(" 'leftParen' _Arguments ")" 'rightParen' {{}};

_Arguments
:
| Arguments;

Arguments
: Expression 'argument'
| Arguments "," Expression 'argument';

7.2 Pattern matching expressions

These changes modify our grammar to support parsing pattern matching
expressions. Pattern matching expressions look like normal expressions, but
may include pattern’s that are surrounded by the back quote, `, character.

For example, `a` + 1 is a simple pattern matching expression that matches
any expression + 1.

Once the pattern has been matched, we can supply a replacement expression
that uses the pattern variables from our match. Replacement expressions are
strings that can contain back quoted variables. These back quoted variables
are replaced with their source from their corresponding matched node.

For example, if we are searching for `a` + 1, we can supply a replacement
expression like 1 + `a`. This pattern will match (3 + 4) + 1. When we
perform the replacement we take the literal 1 + part of the string and con-
catenate the value of the node that matched `a`. In this case, we would con-
catenate (3 + 4) to give us 1 + (3 + 4).

34

7.3 Example

7.3 Example

As an example, let’s rewrite addition expressions using reverse Polish nota-
tion. Our search pattern is `a` + `b` and our replacement expression is `a`
`b` +.

| rewriter compositeRewrite rewrite matcher transformation |
compositeRewrite := SmaCCRewriteFile new.
compositeRewrite parserClass: CalculatorParser.
matcher := SmaCCRewriteTreeMatch new.
matcher source: '`a` + `b`'.
transformation := SmaCCRewriteStringTransformation new.
transformation string: '`a` `b` +'.
rewrite := SmaCCRewrite
comment: 'Postfix rewriter'
match: matcher
transformation: transformation.

compositeRewrite addTransformation: rewrite.
rewriter := SmaCCRewriteEngine new.
rewriter rewriteRule: compositeRewrite.
rewriter rewriteTree: (CalculatorParser parse: '(3 + 4) + (4 + 3)')

This code rewrites (3 + 4) + (4 + 3) in RPN format and returns 3 4 +
4 3 + +. The first match that this finds is `a` = (3 + 4) and `b` = (4 +
3). Inside our replacement expression, we refer to `a` and `b`, so we first
process those expression for more transformations. Since both contain other
addition expressions, we rewrite both expressions to get `a` = 3 4 + and
`b` = 4 3 +.

Here’s the same example, using SmaCC special rewrite syntax.

| rewriter rewriteExpression |
rewriteExpression :=
'Parser: CalculatorParser
>>>`a` + `b`<<<
->
>>>`a` `b` +<<<'.

rewriter := SmaCCRewriteEngine new.
rewriter rewriteRule: (SmaCCRewriteRuleFileParser parse:

rewriteExpression).
rewriter rewriteTree: (CalculatorParser parse: '(3 + 4) + (4 + 3)')

7.4 Parametrizing transformations

Let’s extend our RPN rewriter to support other expressions besides addition.
Now we could do that by providing rewrites for all possible operators (+, -, *,
/, ^), but it would be better if we could do it with patterns. We may wish to
do use `a` `op` `b`, but the pattern `op` will only match AST nodes and

35

SmaCC Transformations

not a token (+). We can tell SmaCC to match tokens by using `a` `op{be-
Token}` `b`. Here’s the rewrite expression that works for all expressions:

Parser: CalculatorParser
\>\>\>`a` `op{beToken}` `b`\<\<\<
->
\>\>\>`a` `b` `op`\<\<\<

If we transform (3 + 4) * (5 - 2) ^ 3, we’ll get 3 4 + 5 2 - 3 ^ *.

36

CHA P T E R8
Grammar idiomatic patterns

In this part, we want to share some coding grammar idioms. Imagine that we
have a description using the traditional * (for 0 or more), interrogation mark
(? for 0 or 1) and + (for 1 or more). The question then is how can we express
this in SmaCC.

8.1 Managing List

Smacc automatically determines if, in the production rules, there is a re-
cursion that represents a list. In such case, it adds an s to the generated in-
stance variable and manage it as a list.

Let us take an example

<a> : a;
<whitespace> : \s+;

%root Line;
%prefix SmaccTutorial;

Line
: <a> 'line' {{}}
| Line <a> 'line' {{}}
;

Here we see that Line is recursive. Smacc will generate a class SmaccTutori-
alLine with an instance variable lines initialized as an ordered collection.

Pay attention, if the production is empty, the generation does not see the
list.

37

Grammar idiomatic patterns

Line
:
| Line <a> 'line' {{}}
;

In such a case you should write it as follows:

Line
: {{}}
| Line <a> 'line' {{}}
;

8.2 Expressing optional repetition

Here is a typical expression mixing

TypeNameList = '(' (TypeName (',' TypeName)*)? ')'

Here is how we can express it.

ParenthesizedTypeNameList
: "(" TypeNameList_Opt ")"
;

TypeNameList_Opt
:
| TypeNameList
;

TypeNameList
: TypeName 'typename' {{}}
| TypeNameList "," TypeName 'typename' {{}}
;

Not that in the following

TypeNameList_Opt
:
| TypeNameList
;

will return nil when empty. If you want to get the node you should use {{}}

38

CHA P T E R9
Conclusion

SmaCC is a really strong and stable library that is used in production since
many years. It is an essential assets for dealing with languages. While Petit-
Parser (See Deep into Pharo http://books.pharo.org) is useful for composing
and reusing fragments of parsers, Smacc offers speed and more traditional
parsing technology.

39

http://books.pharo.org

CHA P T E R 10
Vocabulary

10.1 Reference example

Let us take the following grammar.

<number> : [0-9]+ (\. [0-9]*) ? ;
<whitespace> : \s+;

%left "+" "-";
%left "*" "/";
%right "^";
%annotate_tokens;
%root Expression;
%prefix AST;
%suffix Node;

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "*" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "/" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "^" 'operator' Expression 'right' {{Binary}}
| "(" Expression ")" {{}}
| Number
;

Number
: <number> {{Number}}
;

41

Vocabulary

10.2 Grammar structure

It is composed of

• Scanner part: all rules starting with <>

• Directive part: all lines starting with %

• Parser part: the rest

Elements

Production rule

The following expressions define two production rules

Expression
: Expression 'left' "+" 'operator' Expression 'right' {{Binary}}
| Expression 'left' "-" 'operator' Expression 'right' {{Binary}}
;

Number
: <number> {{Number}}
;

A rule group is defined by several production rules.

• Here the first production rule has two production rules.

• While the seconde production rule has only one.

A production rule can be composed of

• non terminal often starting with uppercase

• scanner token

• keywords (delimited by ")

• variables (delimited by ')

• and action (delimited by {})

Tokens

Tokens are identified by the scanner. A token specification is composed of a
token name and a token regular expressions.

<TokenName> : RegularExpression ;

The following token specification describes a number: It starts with one or
more digits, possibly followed by an decimal point with zero or more digits
after it. The scanner definition for this token is:

42

10.2 Grammar structure

<number> : [0-9]+ (\. [0-9]*) ? ;

Let’s go over each part:

<number> Names the token identified by the expression. The name inside
the <> must be a legal Pharo variable name.

: Separates the name of the token from the token’s definition.

[0-9] Matches any single character in the range '0' to '9' (a digit). We
could also use \d or <isDigit> as these also match digits.

+ Matches the previous expression one or more times. In this case, we are
matching one or more digits.

(...) Groups subexpressions. In this case we are grouping the decimal
point and the numbers following the decimal point.

\. Matches the ’.’ character (. has a special meaning in regular expressions,
quotes it).

* Matches the previous expression zero or more times.

? Matches the previous expression zero or one time (i.e., it is optional).

; Terminates a token specification.

Keywords

Keywords are defined in the production and delimited by ". In the following

Non Terminal

In the production rule Expression 'left' "+" 'operator' Expression
'right', Expression is a non terminal.

Variables

Variables give name to one element of a production. For example

Expression 'left' "^" 'operator' Expression 'right'

• ’left’ and ’right’ denote the expression matched by the rules

• ’operator’ denotes the caret token.

43

	Illustrations
	About this booklet
	Contents
	Obtaining SmaCC
	Basics

	A first SmaCC tutorial
	Opening the tools
	First the scanner
	Handling whitespaces

	Second the calculator grammar
	Compile the Scanner and the Parser
	Testing our parser
	Defining actions
	Named expressions
	Extending the language
	Handling priority
	Handling priority with directives

	SmaCC Scanner
	Regular Expression Syntax
	Overlapping Tokens
	Matching Methods
	Unreferenced Tokens
	Unicode Characters

	SmaCC Parser
	Production Rules
	Named Symbols
	Error Recovery

	SmaCC Directives
	Ambiguous Grammars and Precedence
	Start Symbols
	Id Methods
	Case Insensitive Scanning
	GLR Parsing
	AST Directives

	SmaCC Abstract Syntax Trees
	Restarting
	Building nodes
	Variables and unnamed entities
	Unnamed symbols
	Generating the AST
	AST comparison
	Extending the visitor

	SmaCC Transformations
	Transforming
	Pattern matching expressions
	Example
	Parametrizing transformations

	Grammar idiomatic patterns
	Managing List
	Expressing optional repetition

	Conclusion
	Vocabulary
	Reference example
	Grammar structure
	Elements
	Production rule
	Tokens
	Keywords
	Non Terminal
	Variables

