
Voyage: Persisting Objects in

Document Databases

Esteban Lorenzano, Stéphane Ducasse, Johan Fabry and Norbert Hartl

May 5, 2018

Copyright 2017 by Esteban Lorenzano, Stéphane Ducasse, Johan Fabry and Norbert
Hartl.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 Voyage 1

1.1 What is Voyage? . 1

1.2 Voyage vision . 2

1.3 Contents . 2

1.4 Load Voyage . 3

1.5 Install your document databases . 3

2 A Simple Tutorial with Super Heroes 5

2.1 Creating a connection . 5

2.2 SuperHeroes . 6

2.3 Heroes . 6

2.4 ... and Powers . 7

2.5 Root classes . 7

2.6 Checking in MongoDB . 8

2.7 Queries . 9

2.8 Other Basic Operations . 9

2.9 Adding a new root . 10

2.10 Power as a root . 10

2.11 About relations . 11

2.12 Extending the Hero class . 12

2.13 Equipment can also have powers . 13

2.14 Conclusion . 14

3 Persisting Objects with Voyage 15

3.1 Create a repository . 15

3.2 Singleton mode and instance mode . 15

3.3 Voyage API . 16

3.4 Resetting or dropping the database connection 17

3.5 Testing and Singleton . 17

3.6 Storing objects . 18

3.7 Basic storage . 18

3.8 Embedding objects . 19

3.9 Referencing other roots . 20

3.10 Breaking cycles in graphs . 21

i

Contents

3.11 Storing instances of Date in Mongo . 21

3.12 Enhancing storage . 21

3.13 Custom loading and saving of attributes 24

3.14 A few words concerning the OID . 25

3.15 Querying in Voyage . 25

3.16 Basic object retrieval using blocks or mongoQueries 26

3.17 Quering with elements from another root document 27

3.18 Using the at: message to access embedded documents 27

3.19 Using the where: message to perform Javascript comparisons 27

3.20 Using JSON queries . 28

3.21 Executing a Query . 30

3.22 Basic Object Retrieval . 30

3.23 Limiting Object Retrieval and Sorting . 30

3.24 A Simple Paginator Example . 31

3.25 Creating and Removing Indexes . 32

3.26 Creating Indexes by using OSProcess . 32

3.27 Verifying the use of an Index . 33

3.28 Conclusion . 34

4 Tips and Tricks 35

4.1 How to query for an object by id? . 35

4.2 Not yet supported mongo commands . 36

4.3 Useful mongo commands . 36

4.4 Storing instances of Date in Mongo . 38

4.5 Database design . 38

4.6 Retrieving data . 39

ii

Illustrations

2-1 The model: SuperHeroes, SuperPowers and their Equipments. 6

iii

CHA P T E R 1
Voyage

Voyage is a small persistence framework developed by Esteban Lorenzano,
constructed as a small layer between the objects and a persistency mecha-
nism often a document noSql database.

This booklet started as a number of blog posts by Esteban Lorenzano, which
have been extensively reworked by Johan Fabry and Stéphane Ducasse, in-
cluding additional information shared by Sabine Manaa and Norbert Hartl.
This became the chapter in the Enterprise Pharo book available at *http://-
books.pharo.org>http://books.pharo.org). Since this chapter was complex to
edit without producing a complete version of the book and that extra mate-
rial such as the super heroes tutorial written by Stephane Ducasse appeared
the current booklet is a merge of all the sources and will be the most actively
maintained documentation.

1.1 What is Voyage?

It is purely object-oriented and has as a goal to present a minimal API to
most common development usages. Voyage is a common layer for differ-
ent backends but currently it supports just two: an in-memory layer and a
backend for the MongoDB database (http://mongodb.org1) and UnqLite
(https://www.unqlite.org).

The in-memory layer is useful to prototype applications quickly and for ini-
tial development without a database back-end, for example using the Pharo
image as the persistency mechanism.

The MongoDB database backend stores the objects in a document-oriented
database. In MongoDB each stored entity is a JSON-style document. This

1http://mongodb.org/

1

http://mongodb.org/
https://www.unqlite.org
http://mongodb.org/

Voyage

document-centric nature allows for persisting complex object models in
a fairly straightforward fashion. MongoDB is not an object database, like
Gemstone, Magma or Omnibase, so there still is a small gap to be bridged be-
tween objects and documents. To bridge this gap, Voyage contains a mapper
converting objects to and from documents. This mapper is equivalent to an
Object-Relational Mapper (ORM) when using relational databases. While this
mapper does not solve all the known impedance mismatch issues when going
from objects to a database, we find that using a document database fits better
with the object world than a combination of a ORM and a relational database.
This is because document databases tend to provide better support for the
dynamic nature of the object world.

Voyage provides a default way in which objects are stored in the database.
Fine-grained configuration of this can be performed using Magritte descrip-
tions. Voyage also includes a query API, which allows specific objects to be
retrieved from a MongoDB database. We will discuss each of these features in
this text.

1.2 Voyage vision

Here are the design guidelines that drove Voyage development.

• It should be simple. Voyage minimizes the descriptions to be given by
the developer.

• It should ensure object identity. Voyage ensures that you cannot
have inconsistencies by having one object reloaded with a different
identity than the one it got.

• It should provide error-handling.

• It should minimize communication. Voyage implements a connec-
tion pool.

Voyage does not define a Voyage Query Language but use the underlying
back-end query language. You have to use the MongoDB query language
even if you can use blocks to define queries you can also use JSON dictionar-
ies to express queries since MongoDB internally uses JSON.

1.3 Contents

This booklet has several chapters

• One is a simple tutorial to get started with Voyage.

• Then a more complete overview of the API is described.

• Finally a chapter gathering tips and tricks is presented.

2

1.4 Load Voyage

1.4 Load Voyage

To install Voyage, including support for the MongoDB database, go to the
Configurations Browser (in the World Menu/Tools) and load Configura-
tionOfVoyageMongo. Or alternatively execute in a workspace:

Gofer it
url: 'http://smalltalkhub.com/mc/estebanlm/Voyage/main';
configurationOf: 'VoyageMongo';
loadStable.

This will load all that is needed to persist objects into a Mongo database.

1.5 Install your document databases

MongoDB

Next is to install the MongoDB database. How to do this depends on the op-
erating system, and is outside of the scope of this text. We refer to the Mon-
goDB website2 for more information.

2http://www.mongodb.org/downloads

3

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

CHA P T E R2
A Simple Tutorial with Super

Heroes

This chapter describes a step by step tutorial showing the possibilities of-
fered by Voyage (an object to document mapper) We will use a simple but not
trivial domain: super heroes, super powers and their equipments. You will
learn how to save and retrieve objects.

2.1 Creating a connection

One you installed MongoBD, we can start to connect to the database as fol-
lows:

| repository |
repository := VOMongoRepository

host: 'localhost'
database: 'superHeroes'.

repository enableSingleton.

If you are not connected to a database, you can always use in memoryrepository
(useful for prototyping your application).

| repository |
repository := VOMemoryRepository new.
repository enableSingleton

With this approach you can work as if you would be connected to a real database
and later during your development you will be able to transparently switch
mode.

5

A Simple Tutorial with Super Heroes

Figure 2-1 The model: SuperHeroes, SuperPowers and their Equipments.

Usually we define one single method to set up the repository. For example,
we can add a class method to the class Hero that we will define just after.

Hero class >> setUpConnection
| repository |
repository := VOMongoRepository
host: 'localhost'
database: 'superHeroes'.

repository enableSingleton.

2.2 SuperHeroes

Now we can define a first version of our domain. Figure 2-1 shows the model
that we will use for this tutorial.

2.3 Heroes

Let us define the class Hero.

Object subclass: #Hero
instanceVariableNames: 'name level powers'
classVariableNames: ''
package: 'SuperHeroes'

Hero >> name
^ name

Hero >> name: aString
name := aString

6

2.4 ... and Powers

Hero >> level
^ level

Hero >> level: anObject
level := anObject

Hero >> powers
^ powers ifNil: [powers := Set new]

Hero >> addPower: aPower
self powers add: aPower

2.4 ... and Powers

Let us define the class Power.
Object subclass: #Power

instanceVariableNames: 'name'
classVariableNames: ''
package: 'SuperHeroes'

Power >> name
^ name

Power >> name: aString
name := aString

Ajoutez les méthodes printOn: afin d’améliorer la navigation et le débug-
gage de vos super heroes.

2.5 Root classes

Now we have to decide what are the objects that we want to save and query.
For this we should declare the roots of the object graph that we want to save.
A root can be any class of the system. Declaring a root is done by implement-
ing the class method isVoyageRoot on the class of the objects that we want
to save. We will see the implications of defining a root later. For now we just
define Hero as root.

Hero class >> isVoyageRoot
^ true

We can create some superheroes and save them in the database.

Hero new
name: 'Spiderman';
level: #epic;
addPower: (Power new name: 'Super-strength');
addPower: (Power new name: 'Wall-climbing');
addPower: (Power new name: 'Spider instinct');

7

A Simple Tutorial with Super Heroes

save.
Hero new

name: 'Wolverine';
level: #epic;
addPower: (Power new name: 'Regeneration');
addPower: (Power new name: 'Adamantium claws');
save.

2.6 Checking in MongoDB

We can check directly in the database to see how our objects are saved.

> show dbs
local 0.078GB
superHeroes 0.078GB

> use superHeroes
switched to db superHeroes

> show collections
Hero

Now we can see how a superhero is actually stored. db.Hero.find()[0] gets
the first object of the collection.

> db.Hero.find()[0]
{
"_id" : ObjectId("d847065c56d0ad09b4000001"),
"#version" : 688076276,
"#instanceOf" : "Hero",
"level" : "epic",
"name" : "Spiderman",
"powers" : [
{

"#instanceOf" : "Power",
"name" : "Spider instinct"

},
{

"#instanceOf" : "Power",
"name" : "Super-strength"

},
{

"#instanceOf" : "Power",
"name" : "Wall-climbing"

}
]

}

Note the way the powers are saved: they are embedded inside the document
that represents the superhero.

8

2.7 Queries

2.7 Queries

Now from Pharo, we can perform some queries to get objects stored in the
database.

Hero selectAll.
> an OrderedCollection(a Hero(Spiderman) a Hero(Wolverine)

Hero selectOne: [:each | each name = 'Spiderman'].
> a Hero(Spiderman)

Hero selectMany: [:each | each level = #epic].
> an OrderedCollection(a Hero(Spiderman) a Hero(Wolverine)

Since MongoDB is storing internally JSON, the argument of a query can be a
dictionary as follows:

Hero selectOne: { #name -> 'Spiderman' } asDictionary.
> a Hero(Spiderman)

Hero selectMany: { #level -> #epic } asDictionary.
> an OrderedCollection(a Hero(Spiderman) a Hero(Wolverine)

Here is a more complex query:

Hero
selectMany: { #level -> #epic } asDictionary
sortBy: { #name -> VOOrder ascending } asDictionary
limit: 10
offset: 0

2.8 Other Basic Operations

Here are some simple operations that can be performed on root classes.

Counting

First we show how we can count:

Hero count.
> 2

Hero count: [:each | each name = 'Spiderman']
> 1

Removing

We can remove objects from the database.

hero := Hero selectAll anyOne.
hero remove.
> a Hero

9

A Simple Tutorial with Super Heroes

We can also remove all the objects from the class.

Hero removeAll. “Beware of this”!
> Hero class

2.9 Adding a new root

Now we will change our requirement and show that we want to be able to
query another class of objects: the powers. Note that when you add a root, it
is important that you either flush your database or perform a migration by
for example loading old objects are republishing them.

Each time you change the database ’schema’, you should reset the database
using the following expression:

VORepository current reset.

When to add a new root

There are two main points to consider when facing the questions of the ne-
cessity of adding a class as a root.

• First, the obvious consideration is whether we need to query objects
separately from their objects that refer to them.

• Second, if you need to make sure that subparts will be shared and not
duplicated you should declare the subparts as root. For example if you
need to be able to share a power between two super heroes and want
to be sure that when you load the two superheroes you do not get two
copies of the same power.

2.10 Power as a root

We declare Power as a new root.

Power class >> isVoyageRoot
^ true

Now we can save the super power objects separately as follows:

Power new name: 'Fly'; save.
Power new name: 'Super-strength'; save.

If you do not see the new collection in the database using show collections
you may face a Voyage bug and you need to reset the memory database cache
in the Pharo image doing:

VORepository current reset.

Now saving your objects and checking the mongo db again should show

10

2.11 About relations

> show collections
Hero
Power

Now we can save a hero and its superpowers. To fully test we flush the heroes
in the database executing Hero removeAll and we execute the following:

| fly superStrength |
fly := Power selectOne: [:each | each name = 'Fly'].
superStrength := Power selectOne: [:each | each name =

'Super-strength'].
Hero new

name: 'Superman'; level: #epic;
addPower: fly;
addPower: superStrength;
save.

Note that while we saved the powers independently from the hero, this is not
mandatory since saving a hero will automatically save its powers.

Now when we query the database we can see that an hero has references to
another collection of Powers and that the powers are not nested inside the
hero documents.

> db.Hero.find()[0]
{

"_id" : ObjectId("d8474983421aa909b4000008"),
"#version" : NumberLong("3874503784"),
"#instanceOf" : "Hero",
"level" : "epic",
"name" : "Superman",
"powers" : [
{

"#collection" : "Power",
"#instanceOf" : "Power",
"_id" : ObjectId("d84745dd421aa909b4000005")

},
{

"#collection" : "Power",
"#instanceOf" : "Power",
"_id" : ObjectId("d84745dd421aa909b4000006")

}
]

}

2.11 About relations

Voyage supports cyclic references between root objects but it does not sup-
port cyclic references to embedded objects. We will see that in the following
section.

11

A Simple Tutorial with Super Heroes

2.12 Extending the Hero class

We will now extend the class Hero with equipments. This example shows
that the root collection declaration is static: when a superclass is defined
as root, the collection in the mongo db will contain instances of both the
class and its subclasses. If we want to have a collection per subclass we have
to define each of them as root and you should duplicate the isVoyageRoot
method in each class.

We add a new instance variable named equipment to the class Hero.

Object subclass: #Hero
instanceVariableNames: 'name level powers equipment'
classVariableNames: ''
package: 'SuperHeroes'

Hero >> equipment
^ equipment ifNil: [equipment := Set new]

Hero >> addEquipment: anEquipment
self equipment add: anEquipment

Since we change the class structure we should reset the local cache of the
database doing VORepository current reset.

Now we define the class Equipment as a new root.

Object subclass: #Equipment
instanceVariableNames: ''
classVariableNames: ''
package: ‘SuperHeroes'

Equipment class >> isVoyageRoot
^ true

And we define two subclasses for Weapon and Armor

Equipment subclass: #Weapon
instanceVariableNames: ''
classVariableNames: ''
category: 'SuperHeroes'

Equipment subclass: #Armor
instanceVariableNames: ''
classVariableNames: ''
category: 'SuperHeroes'

Now saving a new hero with equipment will also save its equipment as a sep-
arate object.

Hero new
name: 'Iron-Man';
level: #epic;
addEquipment: Armor new;

12

2.13 Equipment can also have powers

save.

We can see how the objects are saved in the database

> db.Hero.find()[1]
{

"_id" : ObjectId("d8475734421aa909b4000001"),
"#instanceOf" : "Hero",
"#version" : NumberLong("2898020230"),
"equipment" : [
{

"#instanceOf" : "Armor"
}

],
"level" : "epic",
"name" : "Iron-Man",
"powers" : null

}

Since we did not define Weapon and Armor has separate roots, there is only
one collection named Equipment in the database containing both weapons
and armors.

2.13 Equipment can also have powers

In fact equipments can also have powers (like the hammer of Thor). There-
fore we add powers to the equipments as follows:

Object subclass: #Equipment
instanceVariableNames: 'powers'
classVariableNames: ''
package: 'SuperPowers'

Equipment >> powers
^ powers ifNil: [powers := Set new]

Equipment >> addPower: aPower
self powers add: aPower

Since we change the class structure we should reset the local cache of the
database doing

VORepository current reset

And we can now add a equipment with powers to Ironman as follows:

| hero fly superStrength |
hero := Hero selectOne: [:each | each name = 'Iron-Man'].
fly := Power selectOne: [:each | each name = 'Fly'].
superStrength := Power selectOne: [:each | each name =

'Super-strength'].
hero addEquipment: (Armor new

13

A Simple Tutorial with Super Heroes

addPower: fly;
addPower: superStrength;
yourself);

save.

We see in the database that the Equipment collection contains Armor objects.

> db.Equipment.find()[0]
{
"_id" : ObjectId("d8475777421aa909b4000003"),
"#instanceOf" : "Armor",
"#version" : NumberLong("4204064627")

}

Note that an equipment could contain an equipment. To express this we do
not have anything to handle cyclic references since the class Equipment is a
collection root.

2.14 Conclusion

This little tutorial shows how easy it is to store objects in a Mongo database.
It complements the space of possible solutions such as using Fuel to serialize
object, using the in-memory SandStone approach or the more traditional
relation database mapping with Garage.

14

CHA P T E R3
Persisting Objects with Voyage

In this chapter we will do a tour of Voyage API.

3.1 Create a repository

In Voyage, all persistent objects are stored in a repository. The kind of repos-
itory that is used determines the storage backend for the objects.

To use the in-memory layer for Voyage, an instance of VOMemoryRepository
needs to be created, as follows:

repository := VOMemoryRepository new

In this text, we shall however use the MongoDB backend. To start a new
MongoDB repository or connect to an existing repository create an instance
of VOMongoRepository, giving as parameters the hostname and database
name. For example, to connect to the database databaseName on the host
mongo.db.url execute the following code:

repository := VOMongoRepository
host: 'mongo.db.url'
database: 'databaseName'.

Alternatively, using the message host:port:database: allows to specify
the port to connect to. Lastly, if authentication is required, this can be done
using the message host:database:username:password: or the message
host:port:database:username:password:.

3.2 Singleton mode and instance mode

Voyage can work in two different modes:

15

Persisting Objects with Voyage

• Singleton mode: There is an unique repository in the image, which
works as a singleton keeping all the data. When you use this mode, you
can program using a ”behavioral complete” approach where instances
respond to a certain vocabulary (see below for more details about vo-
cabulary and usage).

• Instance mode: You can have an undetermined number of repositories
living in the image. Of course, this mode requires you to make explicit
which repositories you are going to use.

By default, Voyage works in instance mode: the returned instance has to be
passed as an argument to all database API operations. Instead of having to
keep this instance around, a convenient alternative is to use Singleton mode.
Singleton mode removes the need to pass the repository as an argument to
all database operations. To use Singleton mode, execute:

repository enableSingleton.

Note Only one repository can be the singleton, hence executing this
line will remove any other existing repositories from Singleton mode!
In this document, we cover Voyage in Singleton mode, but using it in In-
stance mode is straightforward as well. See the protocol persistence of
VORepository for more information.

3.3 Voyage API

The following two tables show a representative subset of the API of Voyage.
These methods are defined on Object and Class, but will only truly perform
work if (instances of) the receiver of the message is a Voyage root. See the
voyage-model-core-extensions persistence protocol on both classes for
the full API of Voyage.

First we show Singleton mode:

save stores an object into repository (insert or update)
remove removes an object from repository
removeAll removes all objects of class from repository
selectAll retrieves all objects of some kind
selectOne: retrieves first object that matches the argument
selectMany: retrieves all objects that matches the argument

Second is Instance mode. In Instance mode, the receiver is always the reposi-
tory on which to perform the operation.

16

3.4 Resetting or dropping the database connection

save: stores an object into repository (insert or update)
remove: removes an object from repository
removeAll: removes all objects of class from repository
selectAll: retrieves all objects of some kind
selectOne:where: retrieves first object that matches the where clause
selectMany:where: retrieves all objects that matches the where clause

3.4 Resetting or dropping the database connection

In a deployed application, there should be no need to close or reset the con-
nection to the database. Also, Voyage re-establishes the connection when the
image is closed and later reopened.

However, when developing, resetting the connection to the database may be
needed to reflect changes. This is foremost required when changing storage
options of the database (see section 3.12). Performing a reset is achieved as
follows:

VORepository current reset.

In case the connection to the database needs to be dropped, this is performed
as follows:

VORepository setRepository: nil.

3.5 Testing and Singleton

When we want to test that actions are really saving or removing an object
from a Voyage repository we should take care that running the tests are not
touching a database that may be in use. This is important since we are in
presence of Singleton, which is acting as a global variable. We should make
sure that the tests are run against a repository especially set up for the tests
and that they do not affect another repository.

Here is a typical solution: during the setup, we store the current repository,
set a new one and this is this new temporary repository that will be used for
the tests.

TestCase subclass: #SuperHeroTest
instanceVariableNames: 'oldRepository'
classVariableNames: ''
package: 'MyVoyageTests'

SuperHeroTest >> setUp
oldRepository := VORepository current.
VORepository setRepository: VOMemoryRepository new.

On teardown we set back the saved repository and discard the newly created
repository.

17

Persisting Objects with Voyage

SuperHeroTest >> tearDown
VORepository setRepository: oldRepository

3.6 Storing objects

To store objects, the class of the object needs to be declared as being a root of
the repository. All repository roots are points of entry to the database. Voyage
stores more than just objects that contain literals. Complete trees of objects
can be stored with Voyage as well, and this is done transparently. In other
words, there is no need for a special treatment to store trees of objects. How-
ever, when a graph of objects is stored, care must be taken to break loops. In
this section we discuss such basic storage of objects, and in section 3.12 on
Enhancing Storage we show how to enhance and/or modify the way objects
are persisted.

3.7 Basic storage

Let’s say we want to store an Association (i.e. a pair of objects). To do this, we
need to declare that the class Association is storable as a root of our repos-
itory. To express this we define the class method isVoyageRoot to return
true.

Association class>>isVoyageRoot
^ true

We can also define the name of the collection that will be used to store doc-
uments with the voyageCollectionName class method. By default, Voyage
creates a MongoDB collection for each root class with name the name of the
class.

Association class>>voyageCollectionName
^ 'Associations'

Then, to save an association, we need to just send it the savemessage:

anAssociation := #answer->42.
anAssociation save.

This will generate a collection in the database containing a document of the
following structure:

{
"_id" : ObjectId("a05feb630000000000000000"),
"#instanceOf" : "Association",
"#version" : NumberLong("3515916499"),
"key" : 'answer',
"value" : 42

}

18

3.8 Embedding objects

The stored data keeps some extra information to allow the object to be cor-
rectly reconstructed when loading:

• instanceOf records the class of the stored instance. This information
is important because the collection can contain subclass instances of
the Voyage root class.

• version keeps a marker of the object version that is committed. This
property is used internally by Voyage for refreshing cached data in the
application. Without a version field, the application would have to
refresh the object by frequently querying the database.

Note that the documents generated by Voyage are not directly visible us-
ing Voyage itself, as the goal of Voyage is to abstract away from the docu-
ment structure. To see the actual documents you need to access the database
directly. For MongoDB this can be done through Mongo Browser, which is
loaded as part of Voyage (World->Tools->Mongo Browser). Other options for
MongoDB are to use the mongo command line interface or a GUI tool such as
RoboMongo1 (Multi-Platform) or MongoHub2 (for Mac).

3.8 Embedding objects

Objects can be as simple as associations of literals or more complex: objects
can contain other objects, leading to a tree of objects. Saving such objects is
as simple as sending the savemessage to them. For example, let’s say that
we want to store rectangles and that each rectangle contains two points. To
achieve this, we specify that the Rectangle class is a document root as fol-
lows:

Rectangle class>>isVoyageRoot
^ true

This allows rectangles to be saved to the database, for example as shown by
this snippet:

aRectangle := 42@1 corner: 10@20.
aRectangle save.

This will add a document to the rectangle collection of the database with
this structure:

{
"_id" : ObjectId("ef72b5810000000000000000"),
"#instanceOf" : "Rectangle",
"#version" : NumberLong("2460645040"),
"origin" : {
"#instanceOf" : "Point",

1http://robomongo.org
2http://mongohub.todayclose.com/

19

http://robomongo.org
http://mongohub.todayclose.com/
http://robomongo.org
http://mongohub.todayclose.com/

Persisting Objects with Voyage

"x" : 42,
"y" : 1

},
"corner" : {
"#instanceOf" : "Point",
"x" : 10,
"y" : 20

}
}

3.9 Referencing other roots

Sometimes the objects are trees that contain other root objects. For instance,
you could want to keep users and roles as roots, i.e. in different collections,
and a user has a collection of roles. If the embedded objects (the roles) are
root objects, Voyage will store references to these objects instead of includ-
ing them in the document.

Returning to our rectangle example, let’s suppose we want to keep the points
in a separate collection. In other words, now the points will be referenced
instead of embedded.

After we add isVoyageRoot to Point class, and save the rectangle, in the
rectangle collection, we get the following document:

{
"_id" : ObjectId("7c5e772b0000000000000000"),
"#instanceOf" : "Rectangle",
"#version" : 423858205,
"origin" : {
"#collection" : "point",
"#instanceOf" : "Point",
"_id" : ObjectId("7804c56c0000000000000000")

},
"corner" : {
"#collection" : "point",
"#instanceOf" : "Point",
"_id" : ObjectId("2a731f310000000000000000")

}
}

In addition to this, in the collection point we also get the two following enti-
ties:

{
"_id" : ObjectId("7804c56c0000000000000000"),
"#version" : NumberLong("4212049275"),
"#instanceOf" : "Point",
"x" : 42,
"y" : 1

20

3.10 Breaking cycles in graphs

}

{
"_id" : ObjectId("2a731f310000000000000000"),
"#version" : 821387165,
"#instanceOf" : "Point",
"x" : 10,
"y" : 20

}

3.10 Breaking cycles in graphs

When the objects to be stored contain a graph of embedded objects instead
of a tree, i.e. when there are cycles in the references that the embedded ob-
jects have between them, the cycles between these embedded objects must
be broken. If not, storing the objects will cause an infinite loop. The most
straightforward solution is to declare one of the objects causing the cycle as
a Voyage root. This effectively breaks the cycle at storage time, avoiding the
infinite loop.

For example, in the rectangle example say we have a label inside the rect-
angle, and this label contains a piece of text. The text also keeps a reference
to the label in which it is contained. In other words there is a cycle of refer-
ences between the label and the text. This cycle must be broken in order to
persist the rectangle. To do this, either the label or the text must be declared
as a Voyage root.

An alternative solution to break cycles, avoiding the declaration of new voy-
age roots, is to declare some fields of objects as transient and define how the
graph must be reconstructed at load time. This will be discussed in the fol-
lowing section.

3.11 Storing instances of Date in Mongo

A known issue of mongo is that it does not make a difference between Date
and DateAndTime, so even if you store a Date instance, you will retrieve a
DateAndTime instance. You will have to transform it back to Datemanually
when materializing the object.

3.12 Enhancing storage

How objects are stored can be changed by adding Magritte descriptions to
their classes. In this section, we first talk about configuration options for the
storage format of the objects. Then we treat more advanced concepts such

21

Persisting Objects with Voyage

as loading and saving of attributes, which can be used, for example, to break
cycles in embedded objects.

Configuring storage

Consider that, continuing with the rectangle example but using embedded
points, we add the following storage requirements:

• We need to use a different collection named rectanglesForTest in-
stead of rectangle.

• We only store instances of the Rectangle class in this collection, and
therefore the instanceOf information is redundant.

• The origin and corner attributes are always going to be points, so the
instanceOf information there is redundant as well.

To implement this, we use Magritte descriptions with specific pragmas to
declare properties of a class and to describe both the origin and corner
attributes.

The method mongoContainer is defined as follows: First it uses the pragma
<mongoContainer> to state that it describes the container to be used for
this class. Second it returns a specific VOMongoContainer instance. This in-
stance is configured such that it uses the rectanglesForTest collection in
the database, and that it will only store Rectangle instances.

Note that it is not required to specify both configuration lines. It is equally
valid to only declare that the collection to be used is rectanglesForTest, or
only specify that the collection contains just Rectangle instances.

Rectangle class>>mongoContainer
<mongoContainer>

^ VOMongoContainer new
collectionName: 'rectanglesForTest';
kind: Rectangle;
yourself

The two other methods use the pragma <mongoDescription> and return a
Mongo description that is configured with their respective attribute name
and kind, as follows:

Rectangle class>>mongoOrigin
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'origin';
kind: Point;
yourself

22

3.12 Enhancing storage

Rectangle class>>mongoCorner
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'corner';
kind: Point;
yourself

After resetting the repository with:

VORepository current reset

a saved rectangle, now in the rectanglesForTest collection, will look more
or less as follows:

{
"_id" : ObjectId("ef72b5810000000000000000"),
"#version" : NumberLong("2460645040"),
"origin" : {
"x" : 42,
"y" : 1

},
"corner" : {
"x" : 10,
"y" : 20

}
}

Other configuration options for attribute descriptions are:

• beEager declares that the referenced instance is to be loaded eagerly
(the default is lazy).

• beLazy declares that referenced instances are loaded lazily.

• convertNullTo: when retrieving an object whose value is Null (nil),
instead return the result of evaluating the block passed as argument.

For attributes which are collections, the VOMongoToManyDescription needs
to be returned instead of the VOMongoToOneDescription. All the above con-
figuration options remain valid, and the kind: configuration option is used
to specify the kind of values the collection contains.

VOMongoToManyDescription provides a number of extra configuration op-
tions:

• kindCollection: specifies the class of the collection that is contained
in the attribute.

• convertNullToEmpty when retrieving a collection whose value is Null
(nil), it returns an empty collection.

23

Persisting Objects with Voyage

3.13 Custom loading and saving of attributes

It is possible to write specific logic for transforming attributes of an object
when written to the database, as well as when read from the database. This
can be used, e.g., to break cycles in the object graph without needing to de-
clare extra Voyage roots. To declare such custom logic, a MAPluggableAc-
cessor needs to be defined that contains Smalltalk blocks for reading the
attribute from the object and writing it to the object. Note that the names
of these accessors can be counter-intuitive: the read: accessor defines the
value that will be stored in the database, and the write: accessor defines
the transformation of this retrieved value to what is placed in the object.
This is because the accessors are used by the Object-Document mapper when
reading the object to store it to the database and when writing the object
to memory, based on the values obtained from the database.

Defining accessors allows, for example, a Currency object that is contained
in an Amount to be written to the database as its’ three letter abbreviation
(EUR, USD, CLP, ...). When loading this representation, it needs to be con-
verted back into a Currency object, e.g. by instantiating a new Currency ob-
ject. This is achieved as follows:

Amount class>>mongoCurrency
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'currency';
accessor: (MAPluggableAccessor

read: [:amount | amount currency abbreviation]
write: [:amount :value | amount currency: (Currency

fromAbbreviation: value)]);
yourself

Also, a post-load action can be defined for an attribute or for the containing
object, by adding a postLoad: action to the attribute descriptor or the con-
tainer descriptor. This action is a one-parameter block, and will be executed
after the object has been loaded into memory with as argument the object
that was loaded.

Lastly, attributes can be excluded from storage (and hence retrieval) by re-
turning a VOMongoTransientDescription instance as the attribute descrip-
tor. This allows to place cut-off points in the graph of objects that is being
saved, i.e. when an object contains a reference to data that should not be
persisted in the database. This may also be used to break cycles in the stored
object graph. It however entails that when retrieving the graph from the
database, attributes that contain these objects will be set to nil. To address
this, a post-load action can be specified for the attribute descriptor or the
container descriptor, to set these attributes to the correct values.

Here is an example that declares that the attribute ’currencyMetaData’ is

24

3.14 A few words concerning the OID

excluded from storage.

Amount class>>mongoCurrencyMetaData
<mongoDescription>

^VOTransientDescription new
attributeName: 'currencyMetaData';
yourself

3.14 A few words concerning the OID

The mongo ObjectId (OID) is a unique field acting as a primary key. It is a 12-
byte BSON type, constructed using:

• a 4-byte value representing seconds passed since the Unix epoch,

• a 3-byte machine identifier,

• a 2-byte process id,

• a 3-byte counter, starting with a random value.

Objects which are added into a mongo root collection get a unique id, in-
stance of OID. If you create such an object and then ask it for its OID by send-
ing it voyageId, you get the OID. The instance variable value of the OID con-
tains a LargePositiveInteger that corresponds to the mongo ObjectId.

It is possible to create and use your own implementation of OIDs and put
these objects into the mongo database. But this is not recommended as you
possibly may no longer be able to query these objects by their OID (by us-
ing voyageId), since mongo expects a certain format. If you do, you should
check your format by querying for it in the mongo console, for example as
below. If you get the result Error: invalid object id: length, then
you will not be able to query this object by id.

> db.Trips.find({"person._id" : ObjectId("190372")})
Fri Aug 28 14:21:10.815 Error: invalid object id: length

An extra advantage of the OID in the mongo format is that these are ordered
by creation date and time and as a result you have an indexed ”creationDate-
AndTime” attribute for free (since there is a non deletable index on the field
of the OID _id).

3.15 Querying in Voyage

Voyage allows to selectively retrieve object instances though queries on the
database. When using the in-memory layer, queries are standard Smalltalk
blocks. When using the MongoDB back-end, the MongoDB query language is
used to perform the searches. To specify these queries, MongoDB uses JSON

25

Persisting Objects with Voyage

structures, and when using Voyage there are two ways in which these can
be constructed. MongoDB queries can be written either as blocks or as dic-
tionaries, depending on their complexity. In this section, we first discuss
both ways in which queries can be created, and we end the section by talking
about how to execute these queries.

3.16 Basic object retrieval using blocks or mongoQueries

The most straightforward way to query the database is by using blocks when
using the in-memory layer or MongoQueries when using the MongoDB back-
end. In this discussion we will focus on the use of MongoQueries, as the use
of blocks is standard Smalltalk.

MongoQueries is not part of Voyage itself but part of the MongoTalk layer
that Voyage uses to talk to MongoDB. MongoTalk was made by Nicolas Pet-
ton and provides all the low-level operations for accessing MongoDB. Mon-
goQueries transforms, within certain restrictions, regular Pharo blocks into
JSON queries that comply to the form that is expected by the database. In
essence, MongoQueries is an embedded Domain Specific Language to create
MongoDB queries. Using MongoQueries, a query looks like a normal Pharo
expression (but the language is much more restricted than plain Smalltalk).

Using MongoQueries, the following operators may be used in a query:

< <= > >= = ~= Regular comparison operators
& AND operator
| OR operator
not NOT operator
at: Access an embedded document
where: Execute a Javascript query

For example, a query that selects all elements in the database whose name is
John is the following:

[:each | each name = 'John']

A slightly more complicated query is to find all elements in the database
whose name is John and the value in orders is greater than 10.

[:each | (each name = 'John') & (each orders > 10)]

Note that this way of querying only works for querying values of the object
but not values of references to other objects. For such case you should build
your query using ids, as traditionally done in relational database, which we
talk about next. However the best solution in the Mongo spirit of things is
to revisit the object model to avoid relationships that are expressed with
foreign keys.

26

3.17 Quering with elements from another root document

3.17 Quering with elements from another root document

With No-SQL databases, it is impossible to query on multiple collections (the
equivalent of a JOIN statement in SQL). You have two options: alter your
schema, as suggested above, or write application-level code to reproduce
the JOIN behavior. The latter option can be done by sending the voyageId
message to an object already returned by a previous query and using that
id to match another object. An example where we match colors color to a
reference color refCol is as follows:

[:each | (each at: 'color._id') = refCol voyageId]

3.18 Using the at: message to access embedded documents

Since MongoDB stores documents of any complexity, it is common that one
document is composed of several embedded documents, for example:

{
"origin" : {
"x" : 42,
"y" : 1

},
"corner" : {
"x" : 10,
"y" : 20

}
}

In this case, to search for objects by one of the embedded document ele-
ments, the message at:, and the field separator ”.” needs to be used. For
example, to select all the rectangles whose origin x value is equal to 42, the
query is as as follows.

[:each | (each at: 'origin.x') = 42]

3.19 Using the where: message to perform Javascript com-

parisons

To perform queries which are outside the capabilities of MongoQueries or
even the MongoDB query language, MongoDB provides a way to write queries
directly in Javascript using the $where operand. This is also possible in Mon-
goQueries by sending the where: message:

In the following example we repeat the previous query with a Javascript ex-
pression:

[:each | each where: 'this.origin.x == 42'].

27

Persisting Objects with Voyage

More complete documentation about the use of $where is in the MongoDB
where documentation3.

3.20 Using JSON queries

When MongoQueries is not powerful enough to express your query, you can
use a JSON query instead. JSON queries are the MongoDB query internal rep-
resentation, and can be created straightforwardly in Voyage. In a nutshell: a
JSON structure is mapped to a dictionary with pairs. In these pairs the key is
a string and the value can be a primitive value, a collection or another JSON
structure (i.e., another dictionary). To create a query, we simply need to cre-
ate a dictionary that satisfies these requirements.

Note The use of JSON queries is strictly for when using the MongoDB
back-end. Other back-ends, e.g., the in-memory layer, do not provide sup-
port for the use of JSON queries.

For example, the first example of the use of MongoQueries is written as a
dictionary as follows:

{ 'name' -> 'John' } asDictionary

Dictionary pairs are composed with AND semantics. Selecting the elements
having John as name AND whose orders value is greater than 10 can be writ-
ten like this:

{
'name' -> 'John'.
'orders' -> { '$gt' : 10 } asDictionary

} asDictionary

To construct the ”greater than” statement, a new dictionary needs to be cre-
ated that uses the MongoDB $gt query selector to express the greater than
relation. For the list of available query selectors we refer to the MongoDB
Query Selectors documentation4.

Querying for an object by OID

If you know the ObjectId for a document, you can create an OID instance with
this value and query for it.

{('_id' -> (OID value: 16r55CDD2B6E9A87A520F000001))} asDictionary.

Note that both of the following are equivalent:

3http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
4http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

28

http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors
http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

3.20 Using JSON queries

OID value: 26555050698940995562836590593. "dec"
OID value: 16r55CDD2B6E9A87A520F000001. "hex"

Note If you have an instance which is in a root collection, then you can
ask it for its voyageId and use that ObjectId in your query.

Using dot notation to access embedded documents

To access values embedded in documents with JSON queries, the dot notation
is used. For example, the query representing rectangles whose origin have 42
as their x values can be expressed this way:

{
'origin.x' -> {'$eq' : 42} asDictionary

} asDictionary

Expressing OR conditions in the query

To express an OR condition, a dictionary whose key is '$or' and whose val-
ues are the expression of the condition is needed. The following example
shows how to select all objects whose name is John that have more than ten
orders OR objects whose name is not John and has ten or less orders:

{ '$or' :
{
{

'name' -> 'John'.
'orders' -> { '$gt': 10 } asDictionary

} asDictionary.
{

'name' -> { '$ne': 'John'} asDictionary.
'orders' -> { '$lte': 10 } asDictionary

} asDictionary.
}.

} asDictionary.

Going beyond MongoQueries features

Using JSON queries allows to use features that are not present in Mongo-
Queries, for example the use of regular expressions. Below is a query that
searches for all documents with a fullname.lastName that starts with the
letter D:
{

'fullname.lastName' -> {
'$regexp': '^D.*'.
'$options': 'i'.

} asDictionary.
} asDictionary.

29

Persisting Objects with Voyage

The option i for a regular expression means case insensitivity. More options
are described in the documentation of the $regex operator5.

This example only briefly illustrates the power of JSON queries. Many more
different queries can be constructed, and the complete list of operators and
usages is in the MongoDB operator documentation6

3.21 Executing a Query

Voyage has a group of methods to perform searches. To illustrate the use
of these methods we will use the stored Point example we have presented
before. Note that all queries in this section can be written either as Mongo-
Queries or as JSON queries, unless otherwise specified.

3.22 Basic Object Retrieval

The following methods provide basic object retrieval.

• selectAll Retrieves all documents in the corresponding database col-
lection. For example, Point selectAll will return all Points.

• selectOne: Retrieves one document matching the query. This maps
to a detect: method and takes as argument a query specification (ei-
ther a MongoQuery or a JSON Query). For example, Point selectOne:
[:each | each x = 42] or alternatively Point selectOne: { 'x'
-> 42 } asDictionary.

• selectMany: Retrieves all the documents matching the query. This
maps to a select: method and takes as argument a query specifica-
tion, like above.

3.23 Limiting Object Retrieval and Sorting

The methods that query the database look similar to their equivalent in the
Collection hierarchy. However unlike regular collections which can operate
fully on memory, often Voyage collection queries need to be customized in
order to optimize memory consumption and/or access speed. This is because
there can be literally millions of documents in each collection, surpassing the
memory limit of Pharo, and also the database searches have a much higher
performance than the equivalent code in Pharo.

The first refinement to the queries consist in limiting the amount of results
that are returned. Of the collection of all the documents that match, a sub-
set is returned that starts at the index that is given as argument. This can

5http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
6http://docs.mongodb.org/manual/reference/operator

30

http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
http://docs.mongodb.org/manual/reference/operator
http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
http://docs.mongodb.org/manual/reference/operator

3.24 A Simple Paginator Example

be used to only retrieve the first N matches to a query, or go over the query
results in smaller blocks, as will be shown next in the simple paginator exam-
ple.

• selectMany:limit: Retrieves a collection of objects from the database
that match the query, up to the given limit. An example of this is Point
selectMany: [:each | each x = 42] limit: 10

• selectMany:limit:offset: Retrieves a collection of objects from the
database that match the query. The first object retrieved will be at the
offset position plus one of the results of the query, and up to limit
objects will be returned. For example, if the above example matched 25
points, the last 15 points will be returned by the query Point select-
Many: [:each | each x = 42] limit: 20 offset: 10 (any limit
argument greater than 15 will do for this example).

The second customization that can be performed is to sort the results. To use
this, the class VOOrder provides constants to specify ascending or descend-
ing sort order.

• selectAllSortBy: Retrieves all documents, sorted by the specifica-
tion in the argument, which needs to be a JSON query. For example,
Point selectAllSortBy: { #x -> VOOrder ascending} asDic-
tionary returns the points in ascending x order.

• selectMany:sortBy: Retrieves all the documents matching the query
and sorts them. For example to return the points where x is 42, in
descending y order: Point selectMany: { 'x' -> 42 } asDic-
tionary sortBy: { #y -> VOOrder descending } asDictionary.

• selectMany:sortBy:limit:offset: Provides for specifying a limit
and offset to the above query.

3.24 A Simple Paginator Example

Often you want to display just a range of objects that belong to the collection,
e.g. the first 25, or from 25 to 50, and so on. Here we present a simple pagi-
nator that implements this behavior, using the selectMany:limit:offset:
method.

First we create a class named Paginator. To instantiate it, a Voyage root
(aClass) and a query (aCondition) need to be given.

Object subclass: #Paginator
instanceVariableNames: 'collectionClass where pageCount'
classVariableNames: ''
package: 'DemoPaginator'

Paginator class>>on: aClass where: aCondition
^ self basicNew

31

Persisting Objects with Voyage

initializeOn: aClass where: aCondition

Paginator>>initializeOn: aClass where: aCondition
self initialize.
collectionClass := aClass.
where := aCondition

Then we define the arithmetic to get the number of pages for a page size and
a given number of entities.

Paginator>>pageSize
^ 25

Paginator>>pageCount
^ pageCount ifNil: [pageCount := self calculatePageCount]

Paginator>>calculatePageCount
| count pages |
count := self collectionClass count: self where.
pages := count / self pageSize.
count \\ self pageSize > 0
ifTrue: [pages := pages + 1].

^ count

The query that retrieves only the elements for a given page is then imple-
mented as follows:

Paginator>>page: aNumber
^ self collectionClass
selectMany: self where
limit: self pageSize
offset: (aNumber - 1) * self pageSize

3.25 Creating and Removing Indexes

There are a number of useful features in MongoDB that are not present in
Voyage but still can be performed from within Pharo, the most important
one being the management of indexes.

3.26 Creating Indexes by using OSProcess

It is not yet possible to create and remove indexes from Voyage, but this can
nonetheless be done by using OSProcess.

For example, assume there is a database named myDB with a collection named
Trips. The trips have an embedded collection with receipts. The receipts
have an attribute named description. The following creates an index on
description:

32

3.27 Verifying the use of an Index

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval ',
'"db.getSiblingDB(''myDB'').Trips.',
'createIndex({''receipts.description'':1})"'

Removing all indexes on the Trips collection can be done as follows:

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval ',
'"db.getSiblingDB(''myDB'').Trips.dropIndexes()"'

3.27 Verifying the use of an Index

To ensure that a query indeed uses the index, ".explain()" can be used
in the mongo console. For example, if we add the index on description as
above, run a query and add .explain() we see, that only a subset of docu-
ments were scanned.

> db.Trips.find({"receipts.description":"a"})
.explain("executionStats")

{
"cursor" : "BtreeCursor receipts.receiptDescription_1",
"isMultiKey" : true,
"n" : 2,
"nscannedObjects" : 2,
"nscanned" : 2,
"nscannedObjectsAllPlans" : 2,
"nscannedAllPlans" : 2,

[...]
}

After removing the index, all documents are scanned (in this example there
are 246):

> db.Trips.find({"receipts.description":"a"}
..explain("executionStats")

{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 246,
"nscanned" : 246,
"nscannedObjectsAllPlans" : 246,
"nscannedAllPlans" : 246,

[...]
}

33

Persisting Objects with Voyage

3.28 Conclusion

In this chapter we presented Voyage, a persistence programming framework.
The strength of Voyage lies in the presence of the object-document mapper
and MongoDB back-end. We have shown how to store objects in, and remove
object from the database, and how to optimise the storage format. This was
followed by a discussion of querying the database; showing the two ways
in which queries can be constructed and detailing how queries are ran. We
ended this chapter by presenting how we can construct indexes in MongoDB
databases, even though Voyage does not provide direct support for it.

34

CHA P T E R4
Tips and Tricks

This chapter contains some tips and tricks that people collected over the
years. It was written by Sabina Manaa.

4.1 How to query for an object by id?

If you know the _id value, you initialize an OID with this and query for it.

Person selectOne: {('_id' -> (OID value:
16r55CDD2B6E9A87A520F000001))} asDictionary.

Note that both are equivalent:

OID value: 26555050698940995562836590593. "dec"
OID value: 16r55CDD2B6E9A87A520F000001. "hex"

Or you have an instance (in this example of Person) which is in a root collec-
tion, then you ask it for its voyageId and use it in your query. The following
assumes that you have a Trips root collection and a Persons root collection.
The trip has an embedded receipts collection. Receipts have a descrip-
tion. The query asks for all trips of the given person with at least one re-
ceipt with the description aString.

Trip
selectMany:

{('receipts.description' -> aString).
('person._id' -> aPerson voyageId)} asDictionary

35

Tips and Tricks

4.2 Not yet supported mongo commands

Indexes

It is not yet possible to create and remove indexes from voyage, but you can
use OSProcess.

Assume you have a database named myDB with a collection named Trips.
The trips have an embedded collection with receipts. The receipts have an
attribute named description. Then you can create an index on description
with

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval

"db.getSiblingDB(''myDB'').Trips.createIndex({''receipts.description'':1})"'

Remove all indexes on the Trips collection with:

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval

"db.getSiblingDB(''myDB'').Trips.dropIndexes()"'

Backup

It is not yet possible to create backup from voyage, so use

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongodump --out {BackupPath}'

Please see the mongo documentation for mongo commands, especially the
--eval command.

4.3 Useful mongo commands

Use “.explain()” in the mongo console to ensure that your query indeed uses
the index.

Example:

Create an index on an embedded attribute (description):

> db.Trips.createIndex({"receipts.description":1})

Query for it and call explain. We see, that only 2 documents were scanned. >
db.Trips.find({”receipts.description”:”a”}).explain(”executionStats”) { ”cur-
sor” : ”BtreeCursor receipts.receiptDescription_1”, ”isMultiKey” : true, ”n”
: 2, ”nscannedObjects” : 2, ”nscanned” : 2, ”nscannedObjectsAllPlans” : 2,
”nscannedAllPlans” : 2, ”scanAndOrder” : false, ”indexOnly” : false, ”nYields”
: 0, ”nChunkSkips” : 0, ”millis” : 0, ”indexBounds” : { ”receipts.receiptDe-
scription” : [[”a”, ”a”]] }, ”allPlans” : [{ ”cursor” : ”BtreeCursor receipts.re-

36

4.3 Useful mongo commands

ceiptDescription_1”, ”n” : 2, ”nscannedObjects” : 2, ”nscanned” : 2, ”in-
dexBounds” : { ”receipts.receiptDescription” : [[”a”, ”a”]] } }], ”server” :
”MacBook-Pro-Sabine.local:27017” }]]]

Now, remove the index

> db.Trips.dropIndexes()
{

"nIndexesWas" : 2,
"msg" : "non-_id indexes dropped for collection",
"ok" : 1

}

Query again, all documents were scanned.

>
db.Trips.find({"receipts.receiptDescription":"a"}).explain("executionStats")

{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 246,
"nscanned" : 246,
"nscannedObjectsAllPlans" : 246,
"nscannedAllPlans" : 246,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 1,
"indexBounds" : {

},
"allPlans" : [
{

"cursor" : "BasicCursor",
"n" : 2,
"nscannedObjects" : 246,
"nscanned" : 246,
"indexBounds" : {

}
}

],
"server" : "MacBook-Pro-Sabine.local:27017"

}

37

Tips and Tricks

4.4 Storing instances of Date in Mongo

A known issue of mongo is Mongo that it does not difference between Date
and DateAndTime, so even if you commit a Date, you will get back a Date-
AndTime. You have to transform it back to Datemanually when materializ-
ing the object.

4.5 Database design

Often you objects do not form a simple tree but a graph with cycles. For ex-
ample you could have persons which are pointing to their trips and each trip
knows about its person (Person <->>Trip). If you create a root Collection
with Persons and a Root collection with Trips, you avoid endless loops to be
generated (see chapter 1.2).

This is an example for a trip pointing to a person which is in another root
collection and another root collection, paymentMethod. Note that the receipt
also points back to the trip, which does not create a loop.

Trip
{
"_id" : ObjectId("55cf2bc73c9b0fe702000008"),
"#version" : 876079653,
"person" : {
"#collection" : "Persons",
"_id" : ObjectId("55cf2bbb3c9b0fe702000007") },

"receipts" : [
{ "currency" : "EUR",
"date" : { "#instanceOf" : "ZTimestamp", "jdn" : 2457249, "secs" :

0 },
"exchangeRate" : 1,
"paymentMethod" : {
"#collection" : "PaymentMethods",
"_id" : ObjectId("55cf2bbb3c9b0fe702000003") },

"receiptDescription" : "Taxi zum Hotel",
"receiptNumber" : 1,
"trip" : {
"#collection" : "Trips",
"_id" : ObjectId("55cf2bc73c9b0fe702000008") } }],

"startPlace" : "Österreich",
"tripName" : "asdf",
"tripNumber" : 1 }

The corresponding person points to all its trips and to its company.

{ "#version" : 714221829,
"_id" : ObjectId("55cf2bbb3c9b0fe702000007"),
"bankName" : "",
"company" : {

38

4.6 Retrieving data

"#collection" : "Companies",
"_id" : ObjectId("55cf2bbb3c9b0fe702000002") },
"email" : "bb@spesenfuchs.de",
"firstName" : "Berta",
"lastName" : "Block",
"roles" : ["user"],
"tableOfAccounts" : "SKR03",
"translator" : "German",
"trips" : [
{
"#collection" : "Trips",
"_id" : ObjectId("55cf2bc73c9b0fe702000008") }] }

If your domain has strictly delimited areas, e.g. clients, you could think about
creating one repository per area (client).

4.6 Retrieving data

One question is if it possible to retrieve data from Mongo collection even if
the database was not created via Voyage. Yes it is possible. Here is the solu-
tion.

First we create a class MyClass with two class side methods:

MyClass class >> isVoyageRoot
^ true

MyClass class >> descriptionContainer
<voyageContainer>
^ VOContainer new

collectionName: 'myCollection';
yourself

Also, to properly read the data one should add instance variables depending
on what is in the database.

For example if we have the following information stored in the database:

{ "_id" : ObjectId("5900a0175bc65a2b7973b48a"), "item" : "canvas",
"qty" : 100, "tags" : ["cotton"] }

In this case MyClass should have instanceVariables: item, qty and tags and
accessors. Then we define the following description on the class side

MyClass class >> mongoItem
<mongoDescription>
^ VOToOneDescription new
attributeName: 'item';
kind: String;
yourself

39

Tips and Tricks

MyClass class >> mongoQty
<mongoDescription>
^ VOToOneDescription new
attributeName: 'qty';
kind: Integer;
yourself

MyClass class >> mongoTags
<mongoDescription>
^ VOToOneDescription new
attributeName: 'tags';
kind: OrderedCollection;
yourself

After that one can connect to database and get the information.

| repository |
repository := VOMongoRepository database: 'databaseName'.
repository selectAll: MyClass

40

	Illustrations
	Voyage
	What is Voyage?
	Voyage vision
	Contents
	Load Voyage
	Install your document databases
	MongoDB

	A Simple Tutorial with Super Heroes
	Creating a connection
	SuperHeroes
	Heroes
	... and Powers
	Root classes
	Checking in MongoDB
	Queries
	Other Basic Operations
	Counting
	Removing

	Adding a new root
	When to add a new root

	Power as a root
	About relations
	Extending the Hero class
	Equipment can also have powers
	Conclusion

	Persisting Objects with Voyage
	Create a repository
	Singleton mode and instance mode
	Voyage API
	Resetting or dropping the database connection
	Testing and Singleton
	Storing objects
	Basic storage
	Embedding objects
	Referencing other roots
	Breaking cycles in graphs
	Storing instances of Date in Mongo
	Enhancing storage
	Configuring storage

	Custom loading and saving of attributes
	A few words concerning the OID
	Querying in Voyage
	Basic object retrieval using blocks or mongoQueries
	Quering with elements from another root document
	Using the at: message to access embedded documents
	Using the where: message to perform Javascript comparisons
	Using JSON queries
	Querying for an object by OID
	Using dot notation to access embedded documents
	Expressing OR conditions in the query
	Going beyond MongoQueries features

	Executing a Query
	Basic Object Retrieval
	Limiting Object Retrieval and Sorting
	A Simple Paginator Example
	Creating and Removing Indexes
	Creating Indexes by using OSProcess
	Verifying the use of an Index
	Conclusion

	Tips and Tricks
	How to query for an object by id?
	Not yet supported mongo commands
	Indexes
	Backup

	Useful mongo commands
	Storing instances of Date in Mongo
	Database design
	Retrieving data

