Calling Foreign Functions with
Pharo

Esteban Lorenzano, Guillermo Polito and Stéphane Ducasse

May 14, 2017
master @ 528d1e0*

Copyright 2015 by Esteban Lorenzano, Guillermo Polito and Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

* to Share: to copy, distribute and transmit the work,

+ to Remix: to adapt the work,
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the shabook ISTgX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

lllustrations ii

1 Unified FFI
1.1 Calling asimple external function
1.2 AnalyzingtheFFlcallout
1.3 Anoteonmarshalling e
1.4 Modulesandlibraries e e e e e e e
1.5 Passingargumentstoafunction,
1.6 Passingamethodparameter
1.7 Aboutarguments i e e e e e e e e
1.8 Passingliterals e e e e
1.9 Passingvariables L L e
110 Passingstrings oL e e e e e e e e e e
111 Exampleanalysis L
112 Passingtwostrings L e e e e e e e e e
113 Getting returnvalue fromafunction
114 Returning”void *"
145 Externaladdress v v v i i e e e e e e e e e e e e e e e e e
116 Externalobjects e e e e e
117 How autoReleaseworks i i i e e e e e e e e e e e
118 SLrUCtUreS . . . v v o e o e e e e e e e e e e e e e e e e e
119 AITAYS o vt e
120 Callbacks. . . o v v v o e e
121 Handles (WIindows) v i v i e e e e e e e e e e e e e e e e e e
122 Howdoesitworks? v i i i e e e e e
123 Nonconventionalcasts v v v i it i
124 Conclusion e

O OV VW VoONNOoOOOoOUTUEDN WN & a

RERRRERRz2223

lllustrations

1.1

CHAPTER

Unified FFI

Foreign Function Interface (FFI) represents the way to call functions/proce-
dures and data structures written in C.

In this document you will learn about the new FFI framework named Unified
FFI, or shortly, uFFI.

We will present how to invoke functions written in C, access C struct, define
callbacks and other frequent situations that you face when you want to inter-
act with an external library. uFFI has been developed by E. Lorenzano.

Calling a simple external function

A Foreign Function Interface (FFI) is the mechanism used by a programming
language to invoke or call functions written in other programming language,
most commonly C. To illustrate what this means, and how uFFI achieves it,
we will start with an example. Suppose that you want to know the amount
of time the image has been running by calling the underlying OS function
named clock. This function is part of the standard C library (1ibc). Its C
declaration is:

[clock_t clock(void);

For the sake of simplicity, let’s consider that clock’s return type is a unit
instead of clock_t. We will discuss about types, conversions and typedefs in
the following sections. This would result in the following function signature.

[uint clock (void)

To call clock from the image, we need to define a binding between a Smalltalk
method and the corresponding function. FFI bindings are normal smalltalk

Unified FF

methods that use the ffiCall:module: message to specify which function
they will call. Let’s then define a new class FFITutorial and define inita
binding to the clock function:

EObject subclass: #FFITutorial
instanceVariableNames: "'
classVariableNames: ''
package: 'FFITutorial'

FFITutorial class >> ticksSinceStart
" self ffiCall: #(uint clock ()) module: 'libc.so.6'

Note that in this example we specify libc as it exists in linux systems. For
this code to run in other platforms you need to replace e.g., the 'libc.s0.6'
string by 'libc.dylib' in Mac OS or 'msvcrt.dll' in windows.

For Mac OS: [[language=smalltalk FFITutorial class » ticksSinceStart * self
fficall: #(uint clock ()) module: "libc.dylib’]]]

For Windows: [[language=smalltalk FFITutorial class » ticksSinceStart * self
fficall: #(uint clock ()) module: 'msvcrt.dll’]]]

In the example above, we define a new empty class, and a method named
ticksSinceStart on its class side. The method ffiCall:module: is pro-
vided by UnifiedFFI and defined in Object, so we can be use it either on the
instance or the class-side.

Note the message #ffiCall:module: cannot be used as a normal ex-
pression in a playground or in the middle of a method. It must only be
sent by methods that define a callout, because it does some

context mangling behind the scenes.
To test if our code works, execute the method and print its result:

[FFITutorial ticksSinceStart

If everything went ok, this expression will return the number of native clock
ticks since the Pharo proces started.

1.2 Analyzing the FFI callout
To understand what happenned and how it worked, let us look at the binding
definition again:

FFITutorial class >> ticksSinceStart
~ self ffiCall: #(uint clock ()) module: 'libc.so.6'

The binding we just did is also called an FFI callout, as it performs a call of a
function in the outside world (the C world). The method ffiCall:module: is

1.3

1.3 A note on marshalling

the one in charge of making the callout. In other words, it first transforms
(marshalls) all arguments from Smalltalk to C, pushes them to the C stack,
performs a call to the external function, and finally converts (marshalls) the
return value from C to Smalltalk. To do all this, ffiCall:module: uses the
function description provided as argument. The first argument is the signa-
ture of the function we want to call, described with an array, and the second
argument is the module or library where uFFI will look for it.

In our example, the signature is as follows: #(uint clock ())
« Its first element is the C return type, here uint.
+ Its second is the name of the called function, here clock.

« Its third element is an array describing the function parameters if
there’s any.

Basically, if you strip down the outer #(), what is inside is a C function pro-
totype, which is very close to normal C syntax. This is intentionally done

s0, that in most cases you can actually copy-and-paste a complete C func-
tion declaration, taken from header file or from documentation, and it is
ready for use. The second argument, the module or library, is in our example
"libc.so0.6", the name of the library where to find the function. The avid
reader will notice that our binding is platform dependent, as it will only run
from a linux machine. We will explore how to define bindings in a platform-
independent in the following section.

|l Note is this next sentence necessary here?

Note that there exist other messages to define callouts that will be discussed
later.

A note on marshalling

In the clock callout example above, we specified the return type as uint and
not SmallInteger. You will see as you go on in the chapter that this is the
same as well with function arguments. Types in bindings are all described in
terms of C language. In general you don’t have to worry too much about this,
because uFFI knows how to map standard C values to Smalltalk objects and
vice-versa. So, a callout is executed, the return value will be converted into a
SmallInteger. You can also define new mappings from C types to Smalltalk
objects. This is useful when wrapping libraries that define new C types as we
will show later.

This conversion process for types from different languages is called mar-
shalling. We will see more examples of automatic conversions (by automatic,
we mean that they are already defined in uFFI) in this Chapter.

Unified FF

1.4 Modules and libraries

We saw before that a callout requires to specify a module or library. uFFI
uses this information to look up the given function. In our previous example,
we were looking up the clock function inside the standard C library, i.e.,
libc.so.6 in my unix system.

We saw until now how modules in uFFI can be expressed by using a library
name. However, this has portability issues as a library will not have the same
name in different platforms, or not be located in the same place. uFFI solves
this problem by allowing also library objects. A library object defines dinam-
ically the real name of the library in the current platform. A library in uFFI
is defined as a subclass of FFILibrary and defining the methods macModu-
leName, unixModuleName and win32ModuleName. uFFI will dispatch to the
library to get the correct module name given the current platform.

Let’s for example consider the library LibC already provided by uFFI:

[FFILibrary subclass: #LibC
instanceVariableNames: "'
classVariableNames: "'
package: 'UnifiedFFI-Libraries'

LibC>>macModuleName
~ 'libc.dylib’

LibC>>unixModuleName
~ 'libc.so0.6'

LibC>>win32ModuleName
"While this is not a 'libc' properly, msvcrt has the functions we
are defining here"
~ 'msvcrt.dil’

With this platform aware library implementation, we can re-implement our
binding in a platform-independent fashion:

FFITutorial class >> ticksSinceStart
~ self ffiCall: #(uint clock ()) module: LibC

As you can see, it is very easy to express different paths and names, depend-
ing on different conditions. For example, here you can see how the Cairo
library is defined for unix platforms:

[cairoLibrary>>unixModuleName
"On different flavors of linux the path to library may differ
depending on 0OS distro or whether system is 32 or 64 bit."

#(
'/usr/1ib/i386-1linux-gnu/libcairo.so0.2"’
'/usr/1ib32/libcairo.so0.2'

1.5 Passing arguments to a function

'/usr/lib/libcairo.so0.2")
do: [:path |
path asFileReference exists ifTrue: [” path] 1.

self error: 'Cannot locate cairo library. Please check if it
installed on your system'

This is very useful and a recommended way of dealing with libraries, better
than hardcoding module names.

Finally, note that any class can also define a method ffiModuleName to pro-
vide a default module for bindings in that class. Callouts may not specify a
module to use this default module.
FFITutorial class>>ffilLibraryName

~ LibC

FFITutorial class>>ticksSinceStart
~ self ffiCall: #(uint clock ())

Note ffilibraryName is a terrible name I forget to change. It should
be just ffiLibrary (but now change is not so easy...)

1.5 Passing arguments to a function

The previous clock example was the one of the simplest possible. It executes
a function without parameters and we got the result. Now let’s look how we
can call functions that take arguments.

1.6 Passing a method parameter

Let’s start with a really simple function: abs(), which takes an integer and
returns its absolute value.
C header.

[int abs (int n);

Smalltalk binding.

FFICExamples class>>abs: anlInteger
~ self ffiCall: #(int abs (int anInteger)) module: LibC

Compared to the previous example, we changed the name of the function
and added an argument. When functions have arguments you have to specify
two things for each of them:

1. their type and the object that you want to be sent to the C function.
That is, in the arguments array, we put the type of the argument (int
in this example), and

Unified FF

2. the name of the Smalltalk variable we pass as argument.

Here anInteger in #(int abs (int anInteger) means that the variable is
bound to the abs: method parameter and will be converted to a C int, when
executing a call.

This type-and-name pairs will be repeated, separated by comma for each
argument, as we will show in the next examples.

Now you can try printing this:

[FFICExamples abs: -42.

1.7 About arguments

In the callout code/binding declaration, we are expressing not one but two
different aspects: the obvious one is the C function signature, the other one
is the objects to pass as arguments to the C function when the method is in-
voked. In this second aspect there are many possibilities. In our example the
argument of the C function is the method argument: anInteger. But it is not
always necessary the case. You can also use some constants, and in that case
it’s not always necessary to specify the type of the argument. This is because
FFI-NB automatically uses them as C ’int’s: nil and false are converted to 0,
and true to 1. Numbers are converted to their respective value, and can be
positive and negative.

1.8 Passing literals
Imagine that we want to have a wrapper that always calls the abs function
with the number -42. Then we directly define it as follows:

FFICExamples class>>absMinusFortyTwo
~ self ffiCall: #(int abs (-42)) module: LibC

Note that we omitted the type of the argument and directly write int abs
(-45) instead of writing int abs (int -45) since by default arguments are
automatically converted to C int.

But, if the C function takes a float/double as argument for example, you must
specify it in the signature:

FFICExamples class>>floor: aFloat
~ self ffiCall: #(double floor(double aFloat)) module: LibC

I Note LucExamples with more complex literals: arrays, ...

1.9 Passing variables

1.9 Passing variables

Often some functions in C libraries take flags as arguments whose values are
declared using #define in C headers. You can, of course take these constant
values from header and put them into your callout. But it is preferable to use
a symbolic names for constants, which is much less confusing than just bare
numbers. To use a symbolic constant you can create an instance-variable, a
class-variable or a variable in shared pool, and then use the variable name as
an argument in your callout.

For example, imagine that we always pass a constant value to our function
that is stored in a class variable of our class:

EObject subclass: #FFICContantExamples

classVariables: 'TheAnswer'
Then don’t forget to initialize it properly:
[FFICContantExamples class>>initialize

TheAnswer := -42.

And finally, in the callout code, we can use it like following:

>FFICContantExamp1es class>>absMinusFortyTwo
~ self ffiCall: #(int abs (TheAnswer)) module: LibC

You can also pass self or any instance variable as arguments to a C call. Sup-
pose you want to add the abs function binding to the class SmallInteger

in a method named absoluteValue, so that we can execute -50 absolute-
Value.

In that case we simply add the absolutevalue method to SmalllInteger,
and we directly pass self as illustrated below.

SmallInteger>>absoluteValue
~ self fficall: #(int abs (int self)) module: LibC

It is is also possible to pass an instance variable, but we let you do it as an
exercise :)

1.10 Passing strings

As you may know strings in C are sequences of characters terminated with
a special character: \0. It is then interesting to see how FFI-NB deals with
them since they are an important data structure in C. For this, we will call
the very well known strlen function. This function requires a string as ar-
gument and returns its number of characters.

C header.

Unified FF

[int strlen (const char * str);

Smalltalk binding.

FFICExamples class>>stringlLength: aString
~ self ffiCall: #(int strlen (String aString)) module: LibC

1.11 Example analysis

You may have noticed that the callout description is not exactly the same as
the C function header.

In the signature #(int strlen (String aString)) there are two differ-
ences with the C signature.

+ The first difference is the const keyword of the argument. For those
not used to C, that’s only a modifier keyword that the compiler takes
into account to make some static validations at compile time. It has no
value when describing the signature for calling a function at runtime.

The second difference, an important one, is the specification of the
argument. It is declared as String aString instead of char » asS-
tring. With String aString, FFI-NB will automatically do the ar-
guments conversion from Smalltalk strings to C strings (null termi-
nated). Therefore it is important to use String and not char *. In the
example, the string passed will be put in an external C char array and
a null termination character will be added to it. Also, this array will

be automatically released after the call ends. This automatic mem-
ory management is very useful but we can also control it as we will see
later. Using (String aString) is equivalent to (someString copy-
With: (Character value:0) asin FFICExamples stringlLength:
(someString copyWith: (Character value:0). Conversely, FFI-NB
will take the C result value of calling the C function and convert it to a
proper Smalltalk Integer in this particular case.

112 Passing two strings
We will now call the strcmp function, which takes two strings as arguments
and returns -1, 0 or 1 depending on the relationship between both strings.

C header

[int strcmp (const char * strl, const char * str2);

Smalltalk binding

FFICExamples class>>stringCompare: aString with: anotherString
~ self fficCall: #(int strcmp (String aString, String
anotherString)) module: LibC

1.13

1.14

1.15

1.13 Getting return value from a function

Notice that you can add arguments by appending them to the arguments ar-
ray, using a comma to separate them. Also notice that you have to explicitly
tell which object is going to be sent for each argument, as already told. In
this case, aString is the first one and anotherString is the second one.

Getting return value from a function

Symmetrically to arguments, returned values are also marshalled, it means
that C values are converted to Smalltalk objects.

We already saw that implicitly through multiple examples since the begin-
ning of the chapter. For example in the abs example, the result is converted
from an int to a Smalllnteger. In the floor example, the result is converted
from a double to a Float.

But FFI-NB can also convert types a bit more complex than atomic types, like
String

FFICExamples>>#tgetEnv: aString
" self ffiCall: #(String getenv (String string)) module: LibC

There is a mapping defined for each atomic type. About a bit more complex
objects (like external objects or structures), we will talk in following sections.

Returning "void *”

Take this call as an example:

FFICExamples class>>malloc: aNumber
* self fficall: #(void * malloc (int aNumber))

This is a special case of return: when there is a function who answers a void
*, In this case, since FFI-NB cannot know which kind of object it represents, it
will answer an instance of ExternalData (we will see this in next section).

Note Luc illustrate that when NULL (a pointer with value 0) is returned,
it is automatically converted to nil

External address

External addresses (contained in the class ExternalAddress) is the way
we represent any kind of data outside Smalltalk. That means data (pointers,
structures, arrays) who are allocated in the heap.

An ExternalAddress can be:

» an allocation of memory (you can use ExternalAddress class>>al-
locate: or ExternalAddress class>>gcallocate:). Note that in

1.16

Unified FF

case of #allocate: you will need to #free the external address later
(#gcallocate: does that work for you).

+ the result of a function call (usually it will come as part of an Exter-
nalData)

ExternalData represents an ExternalAddress with an C type associated.
For example,

Both ExternalAddress and ExternalData can be used as arguments when
declaring functions with pointers as parameters, for example:

LibC>>memCopy: src to: dest size: n
~ self ffiCall: #(void *memcpy(void =dest, const void *src, size_t

n)

External objects

FFIExternalObject represents an object in the heap. An external object is
a reference to any kind of data allocated in the heap mapped to a Smalltalk
object.

This is confusing, so I will try to explain it better: When you allocate a region
of memory in the heap, you get a pointer to that location, which does not
represent anything. But often, frameworks will allocate structures, point-
ers, etc. which actually represents “an object” (not in the same sense as a
Smalltalk object, but can be interpreted like one). For example, to create a
cairo surface, you can call this:

AthensCairoSurface class>>primImage: aFormat width: awidth height:
aHeight

self ffiCall: #(AthensCairoSurface * cairo_image_surface_create
(int aFormat,

int awidth, int aHeight))

A

This will call the cairo function cairo_image_surface_create but instead
answer an ExternalAddress it will create an instance of AthensCairoSur-
face, so you can treat the allocated pointer as an object.

Any class in the system can be an external object as long as either:
« it inherits from FFIExternalObject; or
» it implements in its class side the method asExternalTypeOn:.

You can check for implementors of asExternalTypeOn: for examples, but
they usually looks like this one:

AthensCairoCanvas class>>asExternalTypeOn: generator
"use handle ivar to hold my instance (cairo_t)"
" FFIExternalObjectType objectClass: self

10

117 How autoRelease works

Note if you want to add the resource to an automatic free mechanism
(to make GC frees also the external object), you need

to call autoRelease (in case of children from FFIExternalObject) or imple-
ment similar mechanism.

I Note FFIExternalObject replaces NBExternalObject

1.177 How autoRelease works

Sending #autoRelease message of an object registers object for finalisation
with a particular executor. Then behaviour is divided:

+ A.1) for ExternalAddresses, it just registers in regular way, who will call
finalize on GC

+ A.2) finalize will just call a free assuming ExternalAddress was allo-
cated (which is a malloc)

+ B.1) for all FFIExternalReference, it will register for finalisation what
resourceData answers (normally, the handle of the object)

« B.2) finalisation process will call the object class » finalizeResource-
Data: method, with theresourceData result as parameter

+ B.3) each kind of external reference can decide how to free that data
(by default is also just freeing).

An example of this is how AthensCairoSurface works.

I Note addanexample

1.18 Structures

The FFIExternalStructure object is used to manipulate C structures from
Pharo. From the standard C library we can use the div() function as an ex-
ample. Given a numerator and denominator, it returns a structure holding
the quotient and remainder. In stdlib.h we find these definitions:

Etypedef struct
{
int quot; /* Quotient. «/
int rem; /+ Remainder. =*/

} div_t;

div_t div (int __numer, int __denom)

Converting these to FFI definitions we get...

1

Unified FF

[FFIExternalStructure subclass: #Div_t
instanceVariableNames: "'
classVariableNames: ''
package: 'UnifiedFFI-ExampleLibC'

[Div_t class >> fieldsDesc
"self rebuildFieldAccessors"
/\#(

int quot;
int rem;

)

[LibC class >> div_numer: numer denom: denom
~ self fficCall: #(Div_t div(int numer, int denom)) module: LibC

So lets try it out.

[LibC div_numer: 7 denom: 2
"Div_t (quot: 3 rem: 1)"

Now for another example, imagine you need to manipulate the following C
structure from Pharo:

struct My_Structure {
uint8 id;
char * name;
uint name_length;

}

The first step is to create a subclass of FFIExternalStructure that we name
MyStructure:

FFIExternalStructure subclass: #MyStructure
instanceVariableNames: "'
classVariableNames: ''
package: 'FFIDemo'

Then, we need to describe the structure. This is done by overriding the FFIEx-
ternalStructure class>>#fieldsDesc method. The syntax used to do it
is pretty close to the C syntax:

MyStructure class>>#fieldsDesc
/\#(
uint8 id;
char * struct_name;
uint name_length;

)

Once the structure is described, you can generate the accessors by evaluating
MyStructure rebuildFieldAccessors. This will generate accessors and
mutators on instance side of MyStructure.

12

118 Structures

Now we are going to make the use of this structure a bit easier. As you saw
before, the structure holds a char pointer to represent its name (as a String)
and it also holds the length of this String in name_length field.

Right now, you can use the structure like this:

EmyStruct := MyStructure externalNew. "Use #externalNew to create the
object on the external heap."

"Create an external array of type char to hold the name."
newName := FFIExternalArray externalNewType: 'char' size: 3.
'foo' doWithIndex: [:char :1i |

newName at: i put: char 1.

"Set the name."
myStruct struct_name: newName.
myStruct name_length: newName size.

"Get the name."
structName := String
newFrom: (FFIExternalArray
fromHandle: myStruct struct_name getHandle type: 'char'
size: myStruct name_length)

So to get the actual string, you need to take the char pointer and read name_length
char. We are going to wrap this procedure in a new method:

MyStructure>>#structName
~ String
newFrom: (FFIExternalArray
fromHandle: self struct_name getHandle type: 'char' size:
self name_length)

We want the same thing for the mutator. We do not want to matter with
name_length when setting struct_name:

»MyStructure>>#structName: aString

| externalArray |

externalArray := FFIExternalArray externalNewType: 'char' size:
aString size.

aString dowWithIndex: [:char :i |
externalArray at: i put: char].

self struct_name: externalArray.

self name_length: aString size.

With the two preceding methods added, you can use MyStructure the same
way you use any other Pharo object:

"0f course you still need to use #externalNew!"

myStruct := MyStructure externalNew
structName: 'foo';
id: 42;

13

Unified FF

yourself.

myStruct structName. "foo"
myStruct id. "42"

myStruct structName: 'bar'.
myStruct structName. "bar"

119 Arrays
1.20 Callbacks
1.21 Handles (Windows)

1.22 How does it works?

In a very simplified way, old NativeBoost was taking the first calls to a method
and transforming it into machine code, then reexecuting the method who
now jumps and executes the code stored in the method.

To simplify, we do the same but instead injecting machine code, we create
bytecodes to translate correctly input and output parameters, then we add a
call to the function.

I Note todo here design explanation.

1.23 Non conventional casts

Casting in C is trivial. You can do something like this:

[void *var = 0x42000000.

And you will be creating a pointer who points to the address 0x42000000.
This kind of declarations are used in certain frameworks, notably some Win-
dows libraries.

In Pharo this "casting” is not so easy, and we need to declare this kind of
variables as ExternalAddresses. We do this as this:

[var := ExternalAddress fromAddress: 16r42000000.

1.24 Conclusion

14

	Illustrations
	Unified FFI
	Calling a simple external function
	Analyzing the FFI callout
	A note on marshalling
	Modules and libraries
	Passing arguments to a function
	Passing a method parameter
	About arguments
	Passing literals
	Passing variables
	Passing strings
	Example analysis
	Passing two strings
	Getting return value from a function
	Returning 34void *34
	External address
	External objects
	How autoRelease works
	Structures
	Arrays
	Callbacks
	Handles (Windows)
	How does it works?
	Non conventional casts
	Conclusion

